不断进化的充电电池和充电技术 EV之外再创新市场
时间:11-30
来源:互联网
点击:
充电基础设施的建设出现热潮
与电动工具一样,充电时间短还有望成为电动汽车普及的重要武器。电动汽车的弱点之一就在于一次充电的持续行驶距离较短。如果与快速充电结合,这一弱点便可得以减轻。也许是受这一因素的推动,电动汽车充电基础设施的建设最近在各国活跃起来。
比如,美国Better Place公司正积极准备在以色列、丹麦、奥地利、加拿大为建设充电基础设施。日本汽车厂商中,日产汽车表现踊跃。包括与Better Place合作的以色列及丹麦在内,日产正在与20个行政组织及企业建立合作体制(图4)。“车辆开发和充电基础设施建设是电动汽车普及的两条腿。不两条腿走路的话,肯定无法实现普及”(日产汽车企划及先进技术开发本部技术企划部资深专家上田昌则)。
图4:建立充电基础设施建设合作体制
日产汽车为了2010年在美国和日本、2011年在中国、2012年在全球投放电动汽车,正在与政府及企业建立合作体制。
2009年夏季上市电动汽车的三菱汽车也从美国俄勒冈州为代表,在日本、欧洲、加拿大、新西兰、澳大利亚展开旨在实用化的实证试验及调查活动,稳步推进充电基础设施建设的准备工作。此外,东京大学也将启动在冲绳县建设充电基础设施,目标是使冲绳主岛的2万8000辆租赁车逐步更换成电动汽车。
演变为国家间的竞争
因电动汽车的实用化前景已清晰可见,电池开发的方向也在逐渐变化。“如果5分钟能够充电80%,快速充电就足够用了。与此相比,应更重视低成本化和长寿命化”(NEC东金营销本部解决方案技术部部长堀仁孝)。
电池成本是电动汽车普及的一大障碍。比如,三菱汽车2009年夏季上市的电动汽车“i-MiEV”的价格在400万日元左右。车辆价格高就是因为电池成本高达200万日元以上。实际上,利用国家及地方政府提供的补贴,预计只需200万日元即可购买。但这意味着没有补贴也就不会形成电动汽车市场。
降低电池成本最常用的解决方法是提高电池的能量密度,降低单位容量的成本。但这并非一朝一夕可以实现的。实际上,在锂离子充电电池实用化后的约20年里,向高容量材料的过渡几乎未取得进展,充分说明了开发上的难度。
需要庞大开发费用的新一代锂离子充电电池开发呈现出产官学合作,以举国之力展开竞争的态势。实际上,美国、中国及德国已开始加强对锂离子充电电池的政策措施。尤其是美国,2009年1月就任总统的奥巴马作为绿色新政(Green New Deal)的一环,提出了2015年之前导入100万辆插电混合动力车的目标等,强化了对电动汽车的举措。
在日本,新能源及产业技术综合开发机构(NEDO)也于2009年3月设立了蓄电技术开发室。旨在将NEDO内各领域分别推进的充电电池技术开发系统化。蓄电技术开发室(NEDO燃料电池及氢技术开发部蓄电技术开发室室长弓取修二)表示,“除了追求锂离子充电电池极限性能的技术开发之外,还将推进超越锂离子充电电池的革新性电池系统的开发。并希望形成跨行业开发电池技术的联盟”。
电池业务将有变化
如果短期内无望大幅提高能量密度,就只能推进现有的锂离子充电电池低成本化。也就是说要通过量产来降低成本。而要获得量产效果,就需要普及电动汽车,增加销量。这就是所谓先有鸡还是先有蛋的关系。
因此,目前考虑的是电池的租赁。即通过采用租赁方式来减少高昂的初期费用,以推动电动汽车普及,从而促进电池的量产。在这种情况下,如果建立起根据行驶距离(充电量)而非年均负担收费的制度,便可轻松赢得用户。之后,下一步就是将用过的电池再利用(二手销售)。如果能够启动蓄电用途市场,保证可以买到二手电池,便有望进一步降低初期费用及租赁负担。
但要实现电池的再利用,电池厂商须彻底脱离以往的一次性收益模式,而建立新的业务。东芝(东芝电力流通及产业系统公司SCiB业务推进统括部技术负责人本多啓三)表示,“可充分考虑将电池租赁当作业务”。该公司称,其正在开发的锂离子充电电池以长寿命为特点,在电动汽车上使用后,还可在蓄电等市场上再利用。
东芝开发了负极材料采用钛酸锂(LTO),安全性和寿命都很出色的锂离子充电电池(图5)。该公司2009年秋季开始样品供货可用于电动汽车、能量密度提高至100Wh/kg的电池单元。虽然细节未公布,但据悉正极材料从以前的钴酸锂改为可实现更高容量的材料。电池容量为20Ah。并且,该公司还在开发能量密度为150Wh/kg左右的电池单元,并力争在2011年之前实用化。
图5:积极推广快速充电锂离子充电电池
东芝正加快推广负极材料使用钛酸锂的锂离子充电电池。将来有望实现单位重量能量密度达到150Wh/kg的电池单元。
电池技术人员一致认为,要将电动汽车用过的二手电池再用于其他用途,还有另一课题需要解决。这就是要正确诊断电池的剩余寿命。如果没有简单且精度高的诊断方法,就无法适当设定再利用的电池价格。今后似有必要加快剩余寿命诊断的相关开发。
与电动工具一样,充电时间短还有望成为电动汽车普及的重要武器。电动汽车的弱点之一就在于一次充电的持续行驶距离较短。如果与快速充电结合,这一弱点便可得以减轻。也许是受这一因素的推动,电动汽车充电基础设施的建设最近在各国活跃起来。
比如,美国Better Place公司正积极准备在以色列、丹麦、奥地利、加拿大为建设充电基础设施。日本汽车厂商中,日产汽车表现踊跃。包括与Better Place合作的以色列及丹麦在内,日产正在与20个行政组织及企业建立合作体制(图4)。“车辆开发和充电基础设施建设是电动汽车普及的两条腿。不两条腿走路的话,肯定无法实现普及”(日产汽车企划及先进技术开发本部技术企划部资深专家上田昌则)。
图4:建立充电基础设施建设合作体制
日产汽车为了2010年在美国和日本、2011年在中国、2012年在全球投放电动汽车,正在与政府及企业建立合作体制。
2009年夏季上市电动汽车的三菱汽车也从美国俄勒冈州为代表,在日本、欧洲、加拿大、新西兰、澳大利亚展开旨在实用化的实证试验及调查活动,稳步推进充电基础设施建设的准备工作。此外,东京大学也将启动在冲绳县建设充电基础设施,目标是使冲绳主岛的2万8000辆租赁车逐步更换成电动汽车。
演变为国家间的竞争
因电动汽车的实用化前景已清晰可见,电池开发的方向也在逐渐变化。“如果5分钟能够充电80%,快速充电就足够用了。与此相比,应更重视低成本化和长寿命化”(NEC东金营销本部解决方案技术部部长堀仁孝)。
电池成本是电动汽车普及的一大障碍。比如,三菱汽车2009年夏季上市的电动汽车“i-MiEV”的价格在400万日元左右。车辆价格高就是因为电池成本高达200万日元以上。实际上,利用国家及地方政府提供的补贴,预计只需200万日元即可购买。但这意味着没有补贴也就不会形成电动汽车市场。
降低电池成本最常用的解决方法是提高电池的能量密度,降低单位容量的成本。但这并非一朝一夕可以实现的。实际上,在锂离子充电电池实用化后的约20年里,向高容量材料的过渡几乎未取得进展,充分说明了开发上的难度。
需要庞大开发费用的新一代锂离子充电电池开发呈现出产官学合作,以举国之力展开竞争的态势。实际上,美国、中国及德国已开始加强对锂离子充电电池的政策措施。尤其是美国,2009年1月就任总统的奥巴马作为绿色新政(Green New Deal)的一环,提出了2015年之前导入100万辆插电混合动力车的目标等,强化了对电动汽车的举措。
在日本,新能源及产业技术综合开发机构(NEDO)也于2009年3月设立了蓄电技术开发室。旨在将NEDO内各领域分别推进的充电电池技术开发系统化。蓄电技术开发室(NEDO燃料电池及氢技术开发部蓄电技术开发室室长弓取修二)表示,“除了追求锂离子充电电池极限性能的技术开发之外,还将推进超越锂离子充电电池的革新性电池系统的开发。并希望形成跨行业开发电池技术的联盟”。
电池业务将有变化
如果短期内无望大幅提高能量密度,就只能推进现有的锂离子充电电池低成本化。也就是说要通过量产来降低成本。而要获得量产效果,就需要普及电动汽车,增加销量。这就是所谓先有鸡还是先有蛋的关系。
因此,目前考虑的是电池的租赁。即通过采用租赁方式来减少高昂的初期费用,以推动电动汽车普及,从而促进电池的量产。在这种情况下,如果建立起根据行驶距离(充电量)而非年均负担收费的制度,便可轻松赢得用户。之后,下一步就是将用过的电池再利用(二手销售)。如果能够启动蓄电用途市场,保证可以买到二手电池,便有望进一步降低初期费用及租赁负担。
但要实现电池的再利用,电池厂商须彻底脱离以往的一次性收益模式,而建立新的业务。东芝(东芝电力流通及产业系统公司SCiB业务推进统括部技术负责人本多啓三)表示,“可充分考虑将电池租赁当作业务”。该公司称,其正在开发的锂离子充电电池以长寿命为特点,在电动汽车上使用后,还可在蓄电等市场上再利用。
东芝开发了负极材料采用钛酸锂(LTO),安全性和寿命都很出色的锂离子充电电池(图5)。该公司2009年秋季开始样品供货可用于电动汽车、能量密度提高至100Wh/kg的电池单元。虽然细节未公布,但据悉正极材料从以前的钴酸锂改为可实现更高容量的材料。电池容量为20Ah。并且,该公司还在开发能量密度为150Wh/kg左右的电池单元,并力争在2011年之前实用化。
图5:积极推广快速充电锂离子充电电池
东芝正加快推广负极材料使用钛酸锂的锂离子充电电池。将来有望实现单位重量能量密度达到150Wh/kg的电池单元。
电池技术人员一致认为,要将电动汽车用过的二手电池再用于其他用途,还有另一课题需要解决。这就是要正确诊断电池的剩余寿命。如果没有简单且精度高的诊断方法,就无法适当设定再利用的电池价格。今后似有必要加快剩余寿命诊断的相关开发。
电动汽车 机器人 电压 电路 电容 电流 连接器 相关文章:
- 电动汽车:颠覆性的快速充电与非接触充电技术(09-20)
- 电动汽车的基本概述及重要组成(10-28)
- 矢量控制变频器在混合动力电动汽车中的应用(01-27)
- 基于CAN总线的电动汽车控制系统设计(05-25)
- 电动汽车驱动系统中的超级电容原理(05-21)
- 动力电池管理系统硬件设计技术(05-30)