采用CMRC结构的Ka波段 四次谐波混频器设计
时间:07-28
来源:互联网
点击:
线设计的滤波器在0~50GHz范围内约有3、4个寄生通带,影响了整个系统的带宽,而本设计完全消除了这些寄生通带。
4.3 本振滤波器设计
在本振输入端,应该通本振(9.6GHz),阻射频(37.5GHz)、本振奇次谐波(3LO=28.8GHz、5LO=48GHz)、射频与偶次本振的谐波(RF-2LO=18.3GHz)。
同中频低通滤波器设计类似,也采用两个CMRC级联形式,其中一级长度也选2.6mm,二级长度选1.6mm,级联后HFSS仿真结果如下:
图8 本振端滤波器仿真结果
它对20GHz以后的频率都有了20dB以上的抑制,很好满足了设计的要求。
5 整体电路设计
最后,经过优化设计的整体电路如图9。电路左侧为射频输入,右侧为本振输入,中频由上端输出。
图9 整体电路加工图
结合HFSS和ADS,仿真得变频损耗随射频输入频率变化结果如图10:
图10 Ka波段四次谐波混频器变频损耗
由图可见,15dB以下变频损耗带宽约有4.5GHz,最低变频损耗为7.2dB。
6 总结
本文介绍了谐波混频器的基本原理,分析了CMRC结构的慢波、宽带阻特性,据此设计出一种性能良好的Ka波段宽频带四次谐波混频器。变频损耗在15dB以内的带宽有4.5GHz。在射频频率37.5GHz,本振功率10dBm,中频频率900MHz时,变频损耗为7.2dB。实验研究工作正在进行中。
- 高速通信领域的混频器和调制器分析(06-27)
- 高输入IP3混频器实现坚固型VHF接收器的设计要点(05-30)
- 低失真有源混频器AD831的工作原理及应用(08-28)
- 宽带镜频抑制混频器设计及实现(02-25)
- 通过微波混频器实现频率转换(05-03)
- 高增益高线性度CMOS偶次谐波混频器设计(05-03)