利用完全可编程平台实现高效的马达控制
时间:11-01
来源:互联网
点击:
实现方案
市场上已经有用于三相马达的磁场定向控制实现解决方案。除了实现复杂的算法,设计人员还应考虑该实现方案能否在马达运行中在SVPWM、正弦PWM和FPM等不同调制方案间实时切换。其他需要考虑的方面有:
- 使用同一器件控制多轴
- 集成实时网络协议和更新
- 功能安全设计
要达到本文描述的性能,可以选用Zynq-7000 All Programmable SoC。Zynq-7000 All Programmable SoC完美集成了1GHz 双核 Cortex A9处理器子系统和FPGA架构(如图6所示)。SoC子系统内置SPI、I2C、UART、CAN、USB、GigE MAC等常见外设和接口,以及通用存储器接口。高带宽AMBA AXI互联用于处理器子系统和FPGA之间的直接连接,以实现高速数据互联。此外,Zynq器件采用灵活的IO标准,便于连接外部器件。
图6:Zynq-7000 All Programmable SoC由嵌入式双核Cortex A9处理器子系统(灰色)和可编程FPGA逻辑(黄色)组成,为马达控制提供一款终极平台,可在软/硬件模块间实现无缝互操作性。
Zynq-7000 AP SoC经过精心设计,在单个芯片上即可提供一款最佳的马达控制平台。Cortex A9处理器可用于运行网络软件协议栈、操作系统以及用户的应用代码。它们均以软件方式运行,可实现对器件的总体应用管理。对于FOC算法、调制实现方案和供工业网络使用的定制MAC等关键性功能模块,最好在FPGA架构中实现,以便发挥硬件加速和高速计算优势。由于嵌入式处理器和FPGA架构集成在单个器件中,可以灵活选用软/硬件架构。
图7:Zynq-7000上的马达控制平台架构样例。网络协议栈、软件应用、RTOS由A9子系统负责执行。马达控制算法、调制方案和定制MAC应布置在FPGA架构中,以获取实时性能。
市场上已经有用于三相马达的磁场定向控制实现解决方案。除了实现复杂的算法,设计人员还应考虑该实现方案能否在马达运行中在SVPWM、正弦PWM和FPM等不同调制方案间实时切换。其他需要考虑的方面有:
- 使用同一器件控制多轴
- 集成实时网络协议和更新
- 功能安全设计
要达到本文描述的性能,可以选用Zynq-7000 All Programmable SoC。Zynq-7000 All Programmable SoC完美集成了1GHz 双核 Cortex A9处理器子系统和FPGA架构(如图6所示)。SoC子系统内置SPI、I2C、UART、CAN、USB、GigE MAC等常见外设和接口,以及通用存储器接口。高带宽AMBA AXI互联用于处理器子系统和FPGA之间的直接连接,以实现高速数据互联。此外,Zynq器件采用灵活的IO标准,便于连接外部器件。
图6:Zynq-7000 All Programmable SoC由嵌入式双核Cortex A9处理器子系统(灰色)和可编程FPGA逻辑(黄色)组成,为马达控制提供一款终极平台,可在软/硬件模块间实现无缝互操作性。
Zynq-7000 AP SoC经过精心设计,在单个芯片上即可提供一款最佳的马达控制平台。Cortex A9处理器可用于运行网络软件协议栈、操作系统以及用户的应用代码。它们均以软件方式运行,可实现对器件的总体应用管理。对于FOC算法、调制实现方案和供工业网络使用的定制MAC等关键性功能模块,最好在FPGA架构中实现,以便发挥硬件加速和高速计算优势。由于嵌入式处理器和FPGA架构集成在单个器件中,可以灵活选用软/硬件架构。
图7:Zynq-7000上的马达控制平台架构样例。网络协议栈、软件应用、RTOS由A9子系统负责执行。马达控制算法、调制方案和定制MAC应布置在FPGA架构中,以获取实时性能。
赛灵思 电压 电流 编码器 传感器 电力电子 嵌入式 FPGA 电子 电路 逆变器 PWM SoC Cortex USB 相关文章:
- 用FPGA平台实现工业电机最大效率(12-24)
- 基于FPGA的电机智能驱动控制系统设计(07-29)
- 利用Xilinx FPGA和分解器数字转换器简化角度测量(07-09)
- Xilinx Zynq-7000 引领工业自动化智能化的变革(03-10)
- 航天器DC/DC变换器的可靠性设计(02-12)
- 基于nRF2401智能小区无线抄表系统集中器设计(04-30)
