行人视频检测中阴影检测与去除方法设计
时间:12-28
来源:互联网
点击:
2.3 模糊神经网络
模糊神经网络的结构如图2所示。



式中,ui表示对第i个模糊子集的隶属度,zi表示输出结论的支集值。最后,对输出结果进行二值化表示,1表示目标本体,0表示阴影。当结果小于0.05时,认定为阴影;结果大于0.95时,认定为目标本体,当结果在0.05"0.95之间时,认为无法判断。
2.4 网络自适应优化
用遗传算法对模糊神经网络的结构和参数进行优化。网络的结构优化指确定第3层节点数、第3层和第2层的连接数、以及第3层和第4层的连接数和连接权值。网络的参数优化包括输入变量的隶属度函数的中心参数和宽度参数、输出变量的隶属函数支集值。
种群的每个个体由网络结构和网络的输入隶属度函数参数和结论参数组成,其长度为结构基因长度+参数基因长度。结构基因中“连接”采用二值的编码,“0”表示没有连接,“1”表示有连接,连接权值ωji用(0"1)之间实数编码。输入的隶属度参数Cji和bj、结论参数zi采用实数编码。一个染色体对应一种模糊神经网络结构及其参数。初始种群中包含着对应于最大节点数及输入变量和输出变量在其变化范围内均匀划分模糊子集的个体,其余个体随机产生。将根据经验得到的规则集及输入输出模糊划分对应的向量选入初始种群。
遗传操作包括复制、交叉、变异。为简化运算实现实时处理,本文仅采用变异操作。二值编码按一定的概率将控制基因串中的位从0变异为1,或者从1变异为0。实数编码按下式突变:

2.5 空间特征
考虑到图像中阴影和目标本体相接但互不相交,对于不能判断的像素及初步识别结果,按下述规则进行判断和修正:(1)如果周围像素点多数为“阴影”,则该点是“阴影”。(2)如果周围像素点多数为“目标”,则该点是“目标”。(3)如果周围像素点多数是目标而被判断为“阴影”,则改判断为“目标”。(4)如果周围像素点多数是阴影而被判断为“目标”,则改判断为“阴影”。这里的多数是指相邻8个像素点中5个以上。
3 实验结果和分析
图3、图4是室外拍摄的视频序列的处理结果,视频序列共2 571帧,单帧图像大小为354×288,图3是第154帧图像,图4是第363帧图像。

童车在图3中作为背景被提取出来,而在图4中成为前景。与图3相比,图4中光照有较大变化,图3(d)、图4(d)、图5(d)表明模糊神经网络分类器能有效地进行阴影去除。由图5(d)可见,通过阴影去除,行人能被分隔开来,这样有利于提高视频检测的准确率。
表1是对在不同路口拍摄的行人视频进行行人检测的结果,进行阴影去除后视频检测的平均准确率由61.52%提高到80.15%。

本文给出了一种新的阴影去除算法,该算法以YUV颜色空间为基础,用模糊神经网络分类器识别对像素点提取的光谱特征是否为阴影,网络的结构和参数采用遗传算法进行实时更新,最后结合运动目标与阴影的空间特征对分类结果进行修正。实验表明,该方法能适应光照、场景的变化,通过阴影去除能明显提高行人视频检测的准确率。
本文关于行人视频检测的研究尚处于起步阶段,对视频检测中的遮挡问题、运动描述和行为理解问题还在进一步研究中。
模糊神经网络的结构如图2所示。



式中,ui表示对第i个模糊子集的隶属度,zi表示输出结论的支集值。最后,对输出结果进行二值化表示,1表示目标本体,0表示阴影。当结果小于0.05时,认定为阴影;结果大于0.95时,认定为目标本体,当结果在0.05"0.95之间时,认为无法判断。
2.4 网络自适应优化
用遗传算法对模糊神经网络的结构和参数进行优化。网络的结构优化指确定第3层节点数、第3层和第2层的连接数、以及第3层和第4层的连接数和连接权值。网络的参数优化包括输入变量的隶属度函数的中心参数和宽度参数、输出变量的隶属函数支集值。
种群的每个个体由网络结构和网络的输入隶属度函数参数和结论参数组成,其长度为结构基因长度+参数基因长度。结构基因中“连接”采用二值的编码,“0”表示没有连接,“1”表示有连接,连接权值ωji用(0"1)之间实数编码。输入的隶属度参数Cji和bj、结论参数zi采用实数编码。一个染色体对应一种模糊神经网络结构及其参数。初始种群中包含着对应于最大节点数及输入变量和输出变量在其变化范围内均匀划分模糊子集的个体,其余个体随机产生。将根据经验得到的规则集及输入输出模糊划分对应的向量选入初始种群。
遗传操作包括复制、交叉、变异。为简化运算实现实时处理,本文仅采用变异操作。二值编码按一定的概率将控制基因串中的位从0变异为1,或者从1变异为0。实数编码按下式突变:

2.5 空间特征
考虑到图像中阴影和目标本体相接但互不相交,对于不能判断的像素及初步识别结果,按下述规则进行判断和修正:(1)如果周围像素点多数为“阴影”,则该点是“阴影”。(2)如果周围像素点多数为“目标”,则该点是“目标”。(3)如果周围像素点多数是目标而被判断为“阴影”,则改判断为“目标”。(4)如果周围像素点多数是阴影而被判断为“目标”,则改判断为“阴影”。这里的多数是指相邻8个像素点中5个以上。
3 实验结果和分析
图3、图4是室外拍摄的视频序列的处理结果,视频序列共2 571帧,单帧图像大小为354×288,图3是第154帧图像,图4是第363帧图像。

童车在图3中作为背景被提取出来,而在图4中成为前景。与图3相比,图4中光照有较大变化,图3(d)、图4(d)、图5(d)表明模糊神经网络分类器能有效地进行阴影去除。由图5(d)可见,通过阴影去除,行人能被分隔开来,这样有利于提高视频检测的准确率。
表1是对在不同路口拍摄的行人视频进行行人检测的结果,进行阴影去除后视频检测的平均准确率由61.52%提高到80.15%。

本文给出了一种新的阴影去除算法,该算法以YUV颜色空间为基础,用模糊神经网络分类器识别对像素点提取的光谱特征是否为阴影,网络的结构和参数采用遗传算法进行实时更新,最后结合运动目标与阴影的空间特征对分类结果进行修正。实验表明,该方法能适应光照、场景的变化,通过阴影去除能明显提高行人视频检测的准确率。
本文关于行人视频检测的研究尚处于起步阶段,对视频检测中的遮挡问题、运动描述和行为理解问题还在进一步研究中。
- 一种新型防伪读码器的设计(01-01)
- 新型锁相环芯片全面提升红外无线麦克风产品性能(05-04)
- 2009视频监控:网络化及其推动的几大趋势(06-03)
- 红外摄像机夜视监控系统的四项问题(06-16)
- lns构架智能小区安防及关键技术应用研究(06-09)
- 英国试图利用路灯建城市监控无线网络(07-27)
