利用微控制器简化电子镇流器的设计
时间:12-08
来源:互联网
点击:
目前,设计工程师在设计荧光灯或HID电子镇流器时面临着许多新的挑战。除了一般的成本、可靠性与寿命压力之外,设计师还必须实现一些增强的终端用户功能,例如远程亮度控制,同时还要满足日益严格的国内与国际照明规范。
虽然传统的离散模拟设计技术仍然能够实现很多新的功能需求,但是,采用新一代的基于Flash的低成本8位微控制器(MCU)对于实现满足规范要求的低成本、高分辨率、数字电子镇流控制的设计,具有多种系统优势。尤其是,这些MCU简化了数字反相控制功能,并集成了PFC功能。
电子镇流控制
图1给出了大多数电子镇流控制应用中采用的基本模块结构。主要模块包括EMI(电磁干扰)滤波器、全波整流器、有源PFC前端、数字控制部分和共振灯管输出部分。
EMI滤波器用于阻止镇流器产生的噪声传输回电源线。全波整流器用于将交流电源转换为直流电源电压,这一电压可以受控于其他模块。一般的设计中都采用某种PFC电路控制正弦输入电流,产生经过调节的直流总线电压。镇流控制器部分实现传统R-L-C型共振输出电路的频率调制控制功能(通常采用一个PWM信号),实现灯管的预热、启辉和镇流功能。
R-L-C共振输出电路能够适应多种不同类型的灯管。如果采用基于嵌入式MCU的电路来实现该设计的数字控制部分,那么它能够实现闭环亮度控制、灯管故障检测、关闭与自动重启等功能所需的电路与软件。目前的嵌入式MCU还支持标准的通信接口,例如DALI(Digitally Addressable Lighting Interface,数字可编址照明接口),或者其他一些RS-232型或同步串行接口总线,例如I2C,或者用于远程控制与监测的串行外设接口。
注意,在图1中没有电流流过荧光灯管,当灯管关闭时镇流控制器所见的阻抗为无穷大。在开灯时,电极上的电压必须达到足够高,才能使高电离气体在灯管的两端之间形成电弧。这一最大电压称为击穿电压(VSTRIKE)。当灯管开启之后,该电压将降低到一个较低的稳态电压(INOM)。
为了更好的理解这个镇流控制器电路,我们有必要回顾一下对常规的低压荧光灯进行供电所必要的电路功能。电子镇流电路必须实现下列基本功能。首先,它们必须为灯管的两极提供一个足够高的击穿电压。然后,当灯管开启时,该电路必须维持一个恒定电流,同时进入稳态工作模式。接下来,该电子控制器必须通过反相电路补偿直流总线电源上的波动和故障条件。这样才能确保灯管具有稳定的输出光源和使用寿命。最后,镇流器电路必须符合相应的国内与国际技术规范。
新的数字灯管镇流器设计方案融入了一些新增的功能,例如亮度控制功能、寿命终止监测、启动故障检测或灯管移位指示。不同的灯管需要不同的设置,在数字设计方案中通过保存在MCU非易失性存储器中的软件设置参数很容易控制这些功能设置。这些MCU还能够调整所需的灯管设置参数,确保灯管在使用寿命期间具有最大的效率。例如,可能需要增大击穿电压,或者稍微改变开启状态下的稳态电压。
数字反相控制
半桥式功率变换器和R-L-C谐振回路控制了荧光灯或HID灯两极间的电压。对驱动反相MOSFET的PWM信号进行更精确的控制能够实现更出色的输出电压控制效果。提高PWM模块上步进信号的分辨率能够实现更好的线性频率控制,尤其是在40KHz和120KHz之间。这确保能够提供启动荧光灯或HID灯所需的电极电压,有助于产生稳定的稳态电压。
大多数面向这类应用的8位MCU都具有10位硬件PWM模块,在系统工作状态下通过软件很容易配置这种模块。最大的问题是,这些PWM模块通常都具有较宽的工作频率范围,这限制了前面所提到的40KHz~120KHz范围内频率步进(frequency step)的精度或分辨率。
采用简单的软件控制高频振荡技术,并结合10位硬件PWM外设模块,可以实现精细的频率步进。MCU能够实现这种动态的软件高频振荡控制技术,有效改善灯管镇流器的亮度控制功能。8位MCU集成了各种硬件外设模块,例如PWM外设模块或者软件可配置的模拟比较器,再结合先进的软件控制技术,非常适合于这类应用。
PFC的实现
PFC电路的输入作为交流电源的电阻性负载,并产生一个经过调节的直流输出电压,该电压通常馈送给另外一段降压转换电路。实现PFC的一种方法是采用线性电流控制。该系统工作在具有可变开关频率(30KHz~100KHz)的连续导通模式下。PFC控制算法包括两个控制环路:一个快速环路用于输入电流控制,一个慢速环路用于直流输出电压控制。
输出电压控制器采用MCU处理器与ADC(analog-to-digital control,模-数控制器)相结合的数字方案来实现。在处理器的控制下,来自于ADC的数据用于调制PWM,PWM的输出产生瞬间交流输入电压与所需的瞬间输入电流二者的比值.
然后,所需的输入电流以电压的形式馈送到电流控制环路中的模拟比较器中。PIC16F8XX MCU上提供的多种数字与模拟外设模块,包括比较器和PWM控制器,可用于实现线性CCM(continuous current mode,连续电流模式)控制技术。
虽然传统的离散模拟设计技术仍然能够实现很多新的功能需求,但是,采用新一代的基于Flash的低成本8位微控制器(MCU)对于实现满足规范要求的低成本、高分辨率、数字电子镇流控制的设计,具有多种系统优势。尤其是,这些MCU简化了数字反相控制功能,并集成了PFC功能。
电子镇流控制
图1给出了大多数电子镇流控制应用中采用的基本模块结构。主要模块包括EMI(电磁干扰)滤波器、全波整流器、有源PFC前端、数字控制部分和共振灯管输出部分。
EMI滤波器用于阻止镇流器产生的噪声传输回电源线。全波整流器用于将交流电源转换为直流电源电压,这一电压可以受控于其他模块。一般的设计中都采用某种PFC电路控制正弦输入电流,产生经过调节的直流总线电压。镇流控制器部分实现传统R-L-C型共振输出电路的频率调制控制功能(通常采用一个PWM信号),实现灯管的预热、启辉和镇流功能。
R-L-C共振输出电路能够适应多种不同类型的灯管。如果采用基于嵌入式MCU的电路来实现该设计的数字控制部分,那么它能够实现闭环亮度控制、灯管故障检测、关闭与自动重启等功能所需的电路与软件。目前的嵌入式MCU还支持标准的通信接口,例如DALI(Digitally Addressable Lighting Interface,数字可编址照明接口),或者其他一些RS-232型或同步串行接口总线,例如I2C,或者用于远程控制与监测的串行外设接口。
![]() |
注意,在图1中没有电流流过荧光灯管,当灯管关闭时镇流控制器所见的阻抗为无穷大。在开灯时,电极上的电压必须达到足够高,才能使高电离气体在灯管的两端之间形成电弧。这一最大电压称为击穿电压(VSTRIKE)。当灯管开启之后,该电压将降低到一个较低的稳态电压(INOM)。
为了更好的理解这个镇流控制器电路,我们有必要回顾一下对常规的低压荧光灯进行供电所必要的电路功能。电子镇流电路必须实现下列基本功能。首先,它们必须为灯管的两极提供一个足够高的击穿电压。然后,当灯管开启时,该电路必须维持一个恒定电流,同时进入稳态工作模式。接下来,该电子控制器必须通过反相电路补偿直流总线电源上的波动和故障条件。这样才能确保灯管具有稳定的输出光源和使用寿命。最后,镇流器电路必须符合相应的国内与国际技术规范。
新的数字灯管镇流器设计方案融入了一些新增的功能,例如亮度控制功能、寿命终止监测、启动故障检测或灯管移位指示。不同的灯管需要不同的设置,在数字设计方案中通过保存在MCU非易失性存储器中的软件设置参数很容易控制这些功能设置。这些MCU还能够调整所需的灯管设置参数,确保灯管在使用寿命期间具有最大的效率。例如,可能需要增大击穿电压,或者稍微改变开启状态下的稳态电压。
数字反相控制
半桥式功率变换器和R-L-C谐振回路控制了荧光灯或HID灯两极间的电压。对驱动反相MOSFET的PWM信号进行更精确的控制能够实现更出色的输出电压控制效果。提高PWM模块上步进信号的分辨率能够实现更好的线性频率控制,尤其是在40KHz和120KHz之间。这确保能够提供启动荧光灯或HID灯所需的电极电压,有助于产生稳定的稳态电压。
大多数面向这类应用的8位MCU都具有10位硬件PWM模块,在系统工作状态下通过软件很容易配置这种模块。最大的问题是,这些PWM模块通常都具有较宽的工作频率范围,这限制了前面所提到的40KHz~120KHz范围内频率步进(frequency step)的精度或分辨率。
采用简单的软件控制高频振荡技术,并结合10位硬件PWM外设模块,可以实现精细的频率步进。MCU能够实现这种动态的软件高频振荡控制技术,有效改善灯管镇流器的亮度控制功能。8位MCU集成了各种硬件外设模块,例如PWM外设模块或者软件可配置的模拟比较器,再结合先进的软件控制技术,非常适合于这类应用。
PFC的实现
PFC电路的输入作为交流电源的电阻性负载,并产生一个经过调节的直流输出电压,该电压通常馈送给另外一段降压转换电路。实现PFC的一种方法是采用线性电流控制。该系统工作在具有可变开关频率(30KHz~100KHz)的连续导通模式下。PFC控制算法包括两个控制环路:一个快速环路用于输入电流控制,一个慢速环路用于直流输出电压控制。
输出电压控制器采用MCU处理器与ADC(analog-to-digital control,模-数控制器)相结合的数字方案来实现。在处理器的控制下,来自于ADC的数据用于调制PWM,PWM的输出产生瞬间交流输入电压与所需的瞬间输入电流二者的比值.
然后,所需的输入电流以电压的形式馈送到电流控制环路中的模拟比较器中。PIC16F8XX MCU上提供的多种数字与模拟外设模块,包括比较器和PWM控制器,可用于实现线性CCM(continuous current mode,连续电流模式)控制技术。
电子 MCU 滤波器 电压 电路 电流 总线 PWM 嵌入式 MOSFET 比较器 电阻 ADC PIC 模拟电路 收发器 电感 微芯 低通滤波器 相关文章:
- 一种新型防伪读码器的设计(01-01)
- 基于ARM与DSP的嵌入式运动控制器设计(04-25)
- 航天器DC/DC变换器的可靠性设计(02-12)
- 我国科学家人脸与笔迹识别领域获突破(04-29)
- 基于ARM核的AT75C220及其在指纹识别系统中的应用(05-24)
- 基于nRF2401智能小区无线抄表系统集中器设计(04-30)

