微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 工业电子 > 无铅波峰焊钎料氧化渣的减少措施

无铅波峰焊钎料氧化渣的减少措施

时间:11-10 来源:互联网 点击:





3 氧化渣的减少措施

国内外学者和企业对无铅波峰焊氧化渣减少措施进行了一些研究,主要包括以下几个方面。

3.1 氮气保护的采用

氮气保护是一种有效减少氧化渣产生的方法,利用氮气将空气与液态钎料隔开有效抑制了氧化渣产生。因无铅钎料的润湿性要弱于传统有铅钎料,并易氧化,在氮气氛保护下进行波峰焊接已经成为普遍的技术之一(如图6)。





氮气气氛下焊接,随着氧气浓度的降低,无铅钎料的氧化量明显减少。当氮气保护中的氧气浓度为50×10-6或更低,无铅钎料基本上不产生氧化。根据文献提供的数据,当氧浓度更低时,将得到更好的焊接质量。氮气保护氧浓度在(50~500)×10-6时可减少氧化渣达950%左右,其它文献也给出了高达85%~95"%的结果,如图7 。表3是国外研究学者所做的试验结果[10],可见氧化渣量的减少非常显著,高达95%左右,而且根据Claude Carsac等人提供的数据,对于不同合金种类,氧化渣降低的相对含量差异不大。










氮气保护也会带来不足,主要表现就是增加了PCB表面锡珠和运营成本。有人计算通常节约的焊锡不足以抵消购买液氮或氮气发生器的运行和维护成本。不过,从焊接质量角度以及使用较昂贵的无铅钎料情况下,是否节约成本又要另当别论。总之,在使用氮气保护系统之前,需要仔细计算和考虑。

3.2 抗氧化钎料的使用

日本学者Tadashi Takemoto等人向钎料中分别加入P和Ge元素进行研究。试验用钎料为SnAg和SnAgCu,具体化学成分见表4。设备为可容纳15 kg的小波峰锡炉,试验温度为250℃。通过试验得到:氧化渣的质量随时间线性增加;添加少量的锗和磷可有效地降低氧化渣的质量,其中P的加入可使氧化渣降低到原来的50%左右;对氧化渣进行化学分析表明,在氧化渣中含有的微量元素中锗是添加含量的2~9倍,磷是4.5倍多。氧化渣中的主要氧化物是SnO,氧化渣中的氧含量是5%左右,90%的氧化渣是由金属组成。





冼爱平等人也提出在无铅钎料合金中加入微量的抗氧化元素P、Ge,借助这些微量元素与合金基体的交互作用使其偏析和富集在液态合金的表面,形成一层富集的表面吸附层,在高温条件下,这一富集微量元素的表面吸附层优先与大气中的氧反应,形成一层致密的表面氧化层,保护熔融液面,阻止液面继续氧化,达到减少合金表层氧化速度的目的。

蔡烈松等人[12]提出在Sn0.7Cu中加入0.001%~1.5%的Ti元素,在温度240℃~270℃下,钎料表面有十分优良的抗氧化性,而不加入Ti时,SnCu合金的液态表面很快就出现由浅黄色至深棕色的大量氧化层。

严肃荣等人也在专利CNl554511A中[13]提出在SnCu无铅钎料中加入适当的Ga和RE,可以大大提高钎料的抗氧化性能。Ga的加入可以在钎料表面形成一层结构细腻,致密的集肤层。由于集肤层的作用,使无铅钎料不易被氧化。RE的加入有除气和调制合金细化的作用,也使无铅钎料不易被氧化。由于RE对氧有一定的吸附作用,使得氧的氧化能力下降。并且RE的加入,使氧化层表面由疏松变致密,使得钎料不易进一步氧化,从而提高钎料的抗氧化能力。

邱小明等[14]研究了Sb对锡铅钎料抗氧化能力 的影响。他提出Sb的加入,可以 提高钎料的抗氧化能力,试验结果如图8所示。可以看出,随着Sb含量的增加,从钎料中撇取的氧化渣重量降低,表明钎料抗氧化能力提高。当Sb含量继续增加,撇去的氧化渣质量趋于饱和。






国内学者吴安如等[15]也在研究中提出,微量元素In、P的加入对于降低SnAgSb系钎料的熔点和改进润湿性,防止氧化等起了一定的作用。但是由于所用 的量占总体比例较少,P等在熔铸过程中又有较多的损失,故使其作用受到了一定的限制。日本Nihon公司使用的钎料SNl00C(Sn0.7CuNi)据报道它与其他合金相比有高生产量和较低的成本,其产生的氧化渣量要少于SnPb钎料。

邓志容为了探明P在钎料表面膜(层)中所形成的物相,将Sn0.7Cu一0.008P在260℃保温48 h冷却后的表面进行X衍射分析,同时记录了Sn0.7Cu氧化渣的衍射图,实验结果如图9。比较图9a和9b可以发现,Sn0.7Cu一0.008P氧化渣的衍射图谱比Sn0.7Cu氧化渣的XRD多出A、B两个峰线,不属于任何一种含P、Sn或Cu的己知物相。因此这种在表面富集的P元素多半以某种复杂组成的P的锡氧酸盐的形式组成表面膜,而这种膜是真正致密的抗氧化的膜。










目前国内波峰焊行业所用的无铅钎料主要是SnCu和SnAgCU 钎料,大多数钎料生产厂家都采用加入P元素来改善其抗氧化性能,但抗氧化效果通常都会随时间的延长、微量元素的消耗而变差,因此有了抗氧化剂的出现。

3.

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top