玻璃板上芯片封装关键装备研制与工艺开发
时间:10-06
来源:互联网
点击:
2.2 COG关键装备的研制开发
ACF贴附机的作用是提供一个平台,使各向异性导电膜ACF贴附到玻璃显示屏基板上。ACF是以最大直径为150 mm的卷状安装在贴附机上,卷宽为1~6 mm。玻璃基板的尺寸为20 mm×15 mm~80 mm×80 mm,厚度0.3~1.1 mm。
ACF 在驱动装置的作用下,完成供给、剪切和剥离等动作。供给由电机提供动力,剪切剥离由气缸提供动力。在支持平台上,热压头由气缸驱动垂直运动,实现ACF和玻璃基板的贴附。在上述贴附过程中,热压头的温度通过PID等方式精密恒温控制。温度约为200℃,可以1℃为单位精确设定。同时热压头的压力也可精确控制和调整。特别重要的是热压头和支持平台的压合位置精度,例如平面度必须保持在±6μm以内。ACF贴附机的原型机如图2所示。

ACF贴附机开发的关键技术在于:精密机械动作的协调与控制、高精度的温度和压力控制。预压机(见图3)的作用是使IC芯片与贴附了ACF的玻璃显示屏基板预贴附成一体。IC芯片的尺寸为:3 mm×1 mm~30 mm×5 mm,厚度为0.3~0.7 mm。
IC芯片装在磁盘平台上,在x和y方向通过步进电机驱动。支持平台支承着玻璃基板。对位平台在x,y和θ方向可精密微调,以便调节IC芯片和玻璃基板之间的位置。采用CCD、LED光源、镜头等硬件和软件组成的图像识别和控制系统确保定位精度小于±3μm。
在完成芯片的精密定位后,热压头垂直移动,完成芯片的预压合动作。压力范围为9.8~98.0 N可调。特别重要的是要确保压合过程芯片所保持的定位精度,即压合过程无任何滑移。
通过预压将IC芯片邦定在LCD玻璃板上,使IC与LCD玻璃板之间的线路连通。IC芯片面积小,但I/O端数量多。要使IC与LCD玻璃板之间的线路很好的连通,就需要对IC和LCD进行非常精确的定位,保证足够的定位精度。
预压机开发的关键在于:微米级的高定位精度、图像处理的速度与精度、微量运动的调节和补偿。
本压机是最后完成芯片与玻璃基板贴合生产出合格的液晶显示屏模块的设备。本压机和液晶显示屏模块分别如图4、5所示。



本压机的压合温度高于预压机为400℃,可以1℃为单位精密调节,PID恒温控制。压力范围为17.2~294.0 N,可精确调整。热压头可在垂直方向精确控制并移动,驱动方式为气缸提供动力。热压头与支持平面的平面度要求高,应保持在±2μm内。支持平台支承玻璃基板,度高也可精密调节。
本压机开发的关键在于:运动精度、温度的稳定性和压力的精确性控制。
自动COG封装机是.ACF贴附、预压、本压一体化高效COG封装设备,同时装备有图像检测定位系统和三坐标程控调节功能,有两个压头,适用于多芯片封装。可广泛应用于177.8 mm以下STN、CSTN、TFT液晶模组批量生产。 综上所述,COG工艺过程所用的ACF贴附机、预压机和本压机可以使芯片贴焊到玻璃板上,线距10~30μm,最小连接面积1 600μm2,粘着力强度可靠。因此研究内容包括:
(1)开展ACF贴附、预压和本压原型机的实验分析;
(2)开展多工艺过程模型、多参数耦合模型、键合机理和模型、电气互联性能模型、机械互联强度模型等关键技术的分析与仿真;
(3)各部分机械结构的设计、性能分析与优化;
(4)计算机图像识别的定位系统开发、定位精度控制技术、定位准确性和稳定性问题;
(5)研究与温度控制相关的参数变化规律及其优化方法,开发PID恒温控制系统;
(6)研究与压力控制相关的工艺影响因素及其控制方法;
(7)开展运动、温度、压力等多参数与COG质量变化规律及协同控制方法的实验;
(8)分析和研究精密驱动电机与气动元件在COG工艺中应用的性能匹配和优化问题;
(9)研究关键零件制造工艺、热处理和表面处理工艺;
(10)其他相关工艺的研究,如热压头、支持平台采用特殊的工艺和材料的相关研究,以确保尺寸稳定。
3 技术难点
(1)如何通过理论研究建立相应的数学模型;
(2)综合考虑多工艺多参数与COG质量的关系,开展实验研究,建立多参数耦合的工艺影响规律和协同控制方法,实现温度、压力和定位精度等参数的优化设置;
(3)如何适应电气互联距离不断减小的趋势,开展先进封装工艺的研究。
4 创新的突破点
(1)提出多工艺过程模型、多维参数耦合模型、键合机理和模型、电气互联性能模型、机械互联强度模型,解决提高封装工艺与质量的关键技术问题;
(2)基于理论研究成果和多参数协同控制方法,解决ACF贴附机、预压机、本压机和自动COG封装机开发中的结构、工艺和控制问题,实现具有自主知识产权的设备;
(3)有效提高COG设备的芯片贴焊精度,在x方向达±3μm,y方向达±3μm。
ACF贴附机的作用是提供一个平台,使各向异性导电膜ACF贴附到玻璃显示屏基板上。ACF是以最大直径为150 mm的卷状安装在贴附机上,卷宽为1~6 mm。玻璃基板的尺寸为20 mm×15 mm~80 mm×80 mm,厚度0.3~1.1 mm。
ACF 在驱动装置的作用下,完成供给、剪切和剥离等动作。供给由电机提供动力,剪切剥离由气缸提供动力。在支持平台上,热压头由气缸驱动垂直运动,实现ACF和玻璃基板的贴附。在上述贴附过程中,热压头的温度通过PID等方式精密恒温控制。温度约为200℃,可以1℃为单位精确设定。同时热压头的压力也可精确控制和调整。特别重要的是热压头和支持平台的压合位置精度,例如平面度必须保持在±6μm以内。ACF贴附机的原型机如图2所示。

ACF贴附机开发的关键技术在于:精密机械动作的协调与控制、高精度的温度和压力控制。预压机(见图3)的作用是使IC芯片与贴附了ACF的玻璃显示屏基板预贴附成一体。IC芯片的尺寸为:3 mm×1 mm~30 mm×5 mm,厚度为0.3~0.7 mm。
IC芯片装在磁盘平台上,在x和y方向通过步进电机驱动。支持平台支承着玻璃基板。对位平台在x,y和θ方向可精密微调,以便调节IC芯片和玻璃基板之间的位置。采用CCD、LED光源、镜头等硬件和软件组成的图像识别和控制系统确保定位精度小于±3μm。
在完成芯片的精密定位后,热压头垂直移动,完成芯片的预压合动作。压力范围为9.8~98.0 N可调。特别重要的是要确保压合过程芯片所保持的定位精度,即压合过程无任何滑移。
通过预压将IC芯片邦定在LCD玻璃板上,使IC与LCD玻璃板之间的线路连通。IC芯片面积小,但I/O端数量多。要使IC与LCD玻璃板之间的线路很好的连通,就需要对IC和LCD进行非常精确的定位,保证足够的定位精度。
预压机开发的关键在于:微米级的高定位精度、图像处理的速度与精度、微量运动的调节和补偿。
本压机是最后完成芯片与玻璃基板贴合生产出合格的液晶显示屏模块的设备。本压机和液晶显示屏模块分别如图4、5所示。



本压机的压合温度高于预压机为400℃,可以1℃为单位精密调节,PID恒温控制。压力范围为17.2~294.0 N,可精确调整。热压头可在垂直方向精确控制并移动,驱动方式为气缸提供动力。热压头与支持平面的平面度要求高,应保持在±2μm内。支持平台支承玻璃基板,度高也可精密调节。
本压机开发的关键在于:运动精度、温度的稳定性和压力的精确性控制。
自动COG封装机是.ACF贴附、预压、本压一体化高效COG封装设备,同时装备有图像检测定位系统和三坐标程控调节功能,有两个压头,适用于多芯片封装。可广泛应用于177.8 mm以下STN、CSTN、TFT液晶模组批量生产。 综上所述,COG工艺过程所用的ACF贴附机、预压机和本压机可以使芯片贴焊到玻璃板上,线距10~30μm,最小连接面积1 600μm2,粘着力强度可靠。因此研究内容包括:
(1)开展ACF贴附、预压和本压原型机的实验分析;
(2)开展多工艺过程模型、多参数耦合模型、键合机理和模型、电气互联性能模型、机械互联强度模型等关键技术的分析与仿真;
(3)各部分机械结构的设计、性能分析与优化;
(4)计算机图像识别的定位系统开发、定位精度控制技术、定位准确性和稳定性问题;
(5)研究与温度控制相关的参数变化规律及其优化方法,开发PID恒温控制系统;
(6)研究与压力控制相关的工艺影响因素及其控制方法;
(7)开展运动、温度、压力等多参数与COG质量变化规律及协同控制方法的实验;
(8)分析和研究精密驱动电机与气动元件在COG工艺中应用的性能匹配和优化问题;
(9)研究关键零件制造工艺、热处理和表面处理工艺;
(10)其他相关工艺的研究,如热压头、支持平台采用特殊的工艺和材料的相关研究,以确保尺寸稳定。
3 技术难点
(1)如何通过理论研究建立相应的数学模型;
(2)综合考虑多工艺多参数与COG质量的关系,开展实验研究,建立多参数耦合的工艺影响规律和协同控制方法,实现温度、压力和定位精度等参数的优化设置;
(3)如何适应电气互联距离不断减小的趋势,开展先进封装工艺的研究。
4 创新的突破点
(1)提出多工艺过程模型、多维参数耦合模型、键合机理和模型、电气互联性能模型、机械互联强度模型,解决提高封装工艺与质量的关键技术问题;
(2)基于理论研究成果和多参数协同控制方法,解决ACF贴附机、预压机、本压机和自动COG封装机开发中的结构、工艺和控制问题,实现具有自主知识产权的设备;
(3)有效提高COG设备的芯片贴焊精度,在x方向达±3μm,y方向达±3μm。
电子 显示器 LCD RFID LED 二极管 集成电路 仿真 步进电机 相关文章:
- 一种新型防伪读码器的设计(01-01)
- 基于ARM与DSP的嵌入式运动控制器设计(04-25)
- 航天器DC/DC变换器的可靠性设计(02-12)
- 我国科学家人脸与笔迹识别领域获突破(04-29)
- 基于ARM核的AT75C220及其在指纹识别系统中的应用(05-24)
- 基于nRF2401智能小区无线抄表系统集中器设计(04-30)
