微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 工业电子 > 工程设备CAN总线控制系统设计

工程设备CAN总线控制系统设计

时间:08-06 来源:互联网 点击:
3.1 报文ID的设计  

在通信标识符,即ID号分配时,对于关重信息帧或要求快速响应的信息帧采用低号ID,如装备控制中需要实时反馈信号的各作业机构到位信号;对于传递仅用于监测而不参与实时控制信号的信息帧应采用高ID号,如油温、油压、车姿等状态信息。  

另外,在验收滤波器中对验收代码寄存器(ACR)和验收屏蔽寄存器(AMR)正确设置可以屏蔽与该节点不相干的ID号信息,可以提高有效信息的响应速度。  

3.2 报文的循环发送与查询发送  

对于参与控制的重要信息帧一般应采取定时循环发送方式,保证信息的实时刷新;而对于软硬件版本查询、参数标定等需要临时数据服务的则主要采用C/S(客户机/服务器)方式进行信息帧发送,即进行特定的信息帧定义,当服务器收到客户机的参数查询或标定请求后再处理并发送相应的回馈信息帧。  

3.3 “心跳”检测  

当数据源节点退出总线后(故障或人为退出),接收节点相应的接收数据缓冲区的数据必须进行复位,防止数据不一致造成非期望事件发生。因此,一般要求源节点定时发送“心跳”信息,即设计一特定的信息帧或把特定信息帧中的某一位设计成代表该节点的“心跳”,节点启动工作后每隔一定时间发送“心跳”信息帧或定义的“心跳位”高低电平变化一次,这样如果在一定的时间内没有收到该节点“心跳”信息,则可以判断节点不在总线上,进而做出相应的事件处理。  

图2 数据标定流程图

  
3.4 传输错误检验  

为了提高数据通讯的可靠性,对于关键数据帧(如标定数据帧),采用和校验的方式防止数据传输错误,即数据源节点将最后一个数据字节定义为校验字节,采用累加和等校验等方式,将运算结果的低8位(即低位字节)作为校验数据值。数据接收节点收到数据帧后,通过运算进行比较,结果无误后再进行相应的赋值处理。  

3.5 数据查询与参数标定  

数据查询和标定采用重复发送控制信息直到得到特定反馈信息才结束的通信方式,流程如图2所示。  

4 CAN总线作业终端设计  

将作业终端设计成一个智能节点,采用CAN总线通信,则可以减少连接线缆芯数的数量,提高工作可靠性;同时数据传输内容丰富,可以传递状态信息,也可以传送报文信息,提高信息化程度;并可增加通信距离,提高工作的适应性。  

(1)硬件设计  

基于带CAN总线控制器的单片机PIC18F458系统设计,通过CAN总线收发器MCP2551与其它节点总线相连,外围有开关量输入电路、模拟量输入电路、数码管显示电路、开关量输出电路、CAN收发器和电源电路等,见图3。  

图3 CAN总线作业终端硬件原理框图

  
5 主控制器设计  

主控制器为主要的操作信号采集的执行单元,它将系统的操纵信号进行防误操作处理后控制作业机构的执行元件。  

主控制器采用EPEC 系列高可靠性可编程控制器(PLC)设计,该系列控制器在国内外工程机械中应用较广泛,具有两个CAN通讯口,本身即可兼做多协议的网关。该型控制器具有以下优点:抗电磁干扰、抗振动、耐油、适应环境能力强、结构紧凑、密封性好、具有自我保护能力的特点,可以长期在野外恶劣环境条件下工作,可以直接驱动多种执行器,如电液比例阀、伺服马达等,特别适用于移动设备的使用。当然,就CAN系统作业集成角度来看,STW,INTER CONTROL等控制器的性能也较好,各有其特色,可以根据控制需求进行选择。  

6 虚拟仪表设计  

虚拟仪表主要用于终端显示,以提供各种作业信息。选用PC104主板作为嵌入式计算机系统的硬件,硬件配置表如表1所示,软件采用实时性好的VxWorks操作系统,利用VxWorks BSP包完成移植。  

表1 虚拟仪表硬件配置表  

  
虚拟仪表可以完成工作状态显示、传感器数据标定、视频显示等,提供了良好的人机交互界面,并可以通过RS232接口接入导航定位信息,提高装备的信息化程度。  

7 CAN总线调试诊断仪设计  

调试诊断仪基于BIT技术,采用嵌入式系统架构,硬件以ARM控制器为核心。ARM系列处理器采用32位嵌入式RISC结构,内部集成多级流水线以提高处理器指令的执行速度,其强大功能与外围电路的配合,将信号采集、处理、故障诊断及网络通信等功能集于一体,特别适合作为智能仪器设备的开发平台。HMS30C7202是基于ARM720T的32位处理器,包括了PC机的所有基本功能。具有高性能低功耗的特点,片内资源非常丰富,具有极高的集成度,非常适用于嵌入式系统应用。调试诊断设备硬件由基于ARM芯片HMS30C7202的核心模块加外围电路组成,见图4。为了充分发挥ARM芯片的效率,提高任务级的响应时间,采用实时内核μC/OS-II来进行资源管理。μC/OS-II是一个完整、可移植的抢占式实时多任务操作系统,具有执行效率高、占用空间小、实时性能优良和可扩展性强的特点。用户界面基于MiniGUI平台进行开发,极大地提高了人机交互性能。  

图4 调试诊断仪硬件架构
  

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top