智能电网开始启动
时间:12-24
来源:互联网
点击:
美国加利福尼亚州州长阿诺·施瓦辛格表示:“今后10年内,可再生能源的引入量将会上升至现在的2.5倍。”
目前,为了减少温室气体排放、摆脱对化石燃料的依赖,全球都希望能够大规模地发展风能、太阳能等可再生能源(见图1)。
美国计划到2025年要使可再生能源发电量占到电力供应总量的25%,欧洲也计划到2020年使电力消耗总量的20%来自可再生能源。
但是,要想实现这些目标,还需要解决很多问题。可再生能源的发电量会随气象条件发生较大变化。例如,当没有风时,风力发电的叶片就基本不会转动;在太阳照射不到的地方,太阳能发电也发挥不了作用。而火力发电则不会受到天气的影响,且其输出能够自由控制。相比之下,可再生能源难于控制及调度。
当可再生能源的引入量较小时,电网(电力系统)还可以吸收这部分的输出变化。但是,如果要实现20%~30%的目标比例,那么目前电网的吸收能力肯定不够,这将会导致电力系统频率发生变化,引起停电事故或降低供电质量。
如果不能解决这一问题,可再生能源的引入计划就只是画饼充饥而已。
救星:蓄电池与传感器
解决上述挑战的有效方法就是采用蓄电池,并通过传感器加以控制。具体做法是:针对风力发电与太阳能发电的能源输出,采用蓄电池作为缓冲来保证电网的稳定;再在网络中安装传感器,用来监控(负荷控制)普通住宅、办公楼、工厂等用电方的电力需求(负荷)。对发电端与负荷端进行优化控制,便可以提高电力系统的频率稳定性及供电质量。
新一代电网(即智能电网)就应该具有上述功能,因此,全球的电力运营商与相关厂商都迅速展开了智能电网关键技术的研发工作(见图2)。
在蓄电池方面,可以为每座大规模风力发电站或太阳能发电站建设数MW级的蓄电装置;也可以为每一个配电网,或以普通住宅及办公楼宇等为单位,分散安装蓄电池。而在传感器控制方面,可以通过控制用电方的负荷来降低峰值电力,实现电网的稳定。供电方要实时掌握以普通住宅家电为主的各种设备的电力消耗情况,用户也要能够实时了解自己的用电情况。
未来还可以通过无线或有线技术控制家电设备,强制性地控制电力消耗。譬如,在电力需求的峰值时段,强制将空调的设定温度向上调整2℃。
新的市场需求
智能电网将会给电力系统行业带来巨大的新需求。除了以往电力系统的传统技术与产品外,智能电网很可能会需要一些全新的系统。这也是全球电子厂商纷纷进入智能电网市场的原因。
宣布进入智能电网市场的厂商遍布众多行业,除了通用(GE)等电力行业的龙头企业外,Google、IBM等公司也相继表示出积极态度。
蓄电池就是未来智能电网的新兴市场之一,除了着手开发大容量NAS(钠硫)电池的日本碍子公司以外,开发固定型锂离子充电电池的东芝、三菱重工、日立制作所、美国A123系统等公司也瞄准了这一市场。
在传感器控制方面,除了传感器与通信模块等部件外,测量设备耗电量的智能电表也备受关注。与普通电表相比,智能电表具有通信、用电管理、电费记账等多种功能。将智能电表与用电设备相连接,电力公司就可以通过网络与电表来管理设备的运行情况。多家厂商正在针对该领域进行产品开发。
美国:负荷控制备受关注
在电网中安装蓄电池,并通过负荷控制来实现最佳的供需平衡,这是智能电网的理想状态。但是,由于电网情况、通信线路铺设情况等的不同,世界各国、各地区实现这一理想状态的过程也有所不同。
美国正在积极推进智能电网的发展,目前已经有29个州实施了RPS(可再生能源标准,renewable portfolio standards),强制规定了可再生能源的引入比例。美国政府在更新电力基础设施方面也提出了巨大的投资预算,到2030年投资总额将达到1.5万亿美元(见图3)。
图3 美国在电力相关方面将投入1.5万亿美元
据了解,美国的电网改革将经历以下几个阶段:部署智能电表、普及推广电力负荷控制设备、引入自主负荷控制系统。也就是说,美国智能电网的重点是负荷控制。
美国的电网改革之所以从部署智能电表开始,是因为该方案的成本较低。与大规模新建及改造电网相比,引入每台仅需数十至数百美元的智能电表的初期投资成本较低,并能在比较短的时间内构建出新一代电网。
部署智能电表的另一个理由就是目前业界正在讨论的汽车电动化。美国政府已计划到2015年普及100万辆插电式混合动力车(PHEV)。当电动汽车实现大量普及后,就需要从家庭电网等进行充电,这时也需要稳定的电网。
到那时,还必须考虑在发电端及用电端都构建通信网络与传感器网络,以便实时监控电力状况。这也可以作为用电方负荷控制的一环,比如控制充电开始的时间等。这部分功能将由智能电表负责实现(见图4)。
根据美国的设想,配置智能电表能够培养包括普通用户在内的用电方的节电意识。如果用电方能够实时把握各时间段的电价、电力消耗状况等具体信息,就会主动减少浪费。这也是美国所期待的“可视化”效果。实际上,在美国,已有42个州开始将部署智能电表作为州政策予以推行。
目前,为了减少温室气体排放、摆脱对化石燃料的依赖,全球都希望能够大规模地发展风能、太阳能等可再生能源(见图1)。
美国计划到2025年要使可再生能源发电量占到电力供应总量的25%,欧洲也计划到2020年使电力消耗总量的20%来自可再生能源。
但是,要想实现这些目标,还需要解决很多问题。可再生能源的发电量会随气象条件发生较大变化。例如,当没有风时,风力发电的叶片就基本不会转动;在太阳照射不到的地方,太阳能发电也发挥不了作用。而火力发电则不会受到天气的影响,且其输出能够自由控制。相比之下,可再生能源难于控制及调度。
当可再生能源的引入量较小时,电网(电力系统)还可以吸收这部分的输出变化。但是,如果要实现20%~30%的目标比例,那么目前电网的吸收能力肯定不够,这将会导致电力系统频率发生变化,引起停电事故或降低供电质量。
如果不能解决这一问题,可再生能源的引入计划就只是画饼充饥而已。
救星:蓄电池与传感器
解决上述挑战的有效方法就是采用蓄电池,并通过传感器加以控制。具体做法是:针对风力发电与太阳能发电的能源输出,采用蓄电池作为缓冲来保证电网的稳定;再在网络中安装传感器,用来监控(负荷控制)普通住宅、办公楼、工厂等用电方的电力需求(负荷)。对发电端与负荷端进行优化控制,便可以提高电力系统的频率稳定性及供电质量。
新一代电网(即智能电网)就应该具有上述功能,因此,全球的电力运营商与相关厂商都迅速展开了智能电网关键技术的研发工作(见图2)。
在蓄电池方面,可以为每座大规模风力发电站或太阳能发电站建设数MW级的蓄电装置;也可以为每一个配电网,或以普通住宅及办公楼宇等为单位,分散安装蓄电池。而在传感器控制方面,可以通过控制用电方的负荷来降低峰值电力,实现电网的稳定。供电方要实时掌握以普通住宅家电为主的各种设备的电力消耗情况,用户也要能够实时了解自己的用电情况。
未来还可以通过无线或有线技术控制家电设备,强制性地控制电力消耗。譬如,在电力需求的峰值时段,强制将空调的设定温度向上调整2℃。
新的市场需求
智能电网将会给电力系统行业带来巨大的新需求。除了以往电力系统的传统技术与产品外,智能电网很可能会需要一些全新的系统。这也是全球电子厂商纷纷进入智能电网市场的原因。
宣布进入智能电网市场的厂商遍布众多行业,除了通用(GE)等电力行业的龙头企业外,Google、IBM等公司也相继表示出积极态度。
蓄电池就是未来智能电网的新兴市场之一,除了着手开发大容量NAS(钠硫)电池的日本碍子公司以外,开发固定型锂离子充电电池的东芝、三菱重工、日立制作所、美国A123系统等公司也瞄准了这一市场。
在传感器控制方面,除了传感器与通信模块等部件外,测量设备耗电量的智能电表也备受关注。与普通电表相比,智能电表具有通信、用电管理、电费记账等多种功能。将智能电表与用电设备相连接,电力公司就可以通过网络与电表来管理设备的运行情况。多家厂商正在针对该领域进行产品开发。
美国:负荷控制备受关注
在电网中安装蓄电池,并通过负荷控制来实现最佳的供需平衡,这是智能电网的理想状态。但是,由于电网情况、通信线路铺设情况等的不同,世界各国、各地区实现这一理想状态的过程也有所不同。
美国正在积极推进智能电网的发展,目前已经有29个州实施了RPS(可再生能源标准,renewable portfolio standards),强制规定了可再生能源的引入比例。美国政府在更新电力基础设施方面也提出了巨大的投资预算,到2030年投资总额将达到1.5万亿美元(见图3)。
图3 美国在电力相关方面将投入1.5万亿美元
据了解,美国的电网改革将经历以下几个阶段:部署智能电表、普及推广电力负荷控制设备、引入自主负荷控制系统。也就是说,美国智能电网的重点是负荷控制。
美国的电网改革之所以从部署智能电表开始,是因为该方案的成本较低。与大规模新建及改造电网相比,引入每台仅需数十至数百美元的智能电表的初期投资成本较低,并能在比较短的时间内构建出新一代电网。
部署智能电表的另一个理由就是目前业界正在讨论的汽车电动化。美国政府已计划到2015年普及100万辆插电式混合动力车(PHEV)。当电动汽车实现大量普及后,就需要从家庭电网等进行充电,这时也需要稳定的电网。
到那时,还必须考虑在发电端及用电端都构建通信网络与传感器网络,以便实时监控电力状况。这也可以作为用电方负荷控制的一环,比如控制充电开始的时间等。这部分功能将由智能电表负责实现(见图4)。
根据美国的设想,配置智能电表能够培养包括普通用户在内的用电方的节电意识。如果用电方能够实时把握各时间段的电价、电力消耗状况等具体信息,就会主动减少浪费。这也是美国所期待的“可视化”效果。实际上,在美国,已有42个州开始将部署智能电表作为州政策予以推行。
传感器 智能电网 电子 智能电表 电动汽车 LED 相关文章:
- 多核及虚拟化技术在工业和安全领域的应用(05-23)
- 基于ARM核的AT75C220及其在指纹识别系统中的应用(05-24)
- 基于音频信号的轴承故障诊断方法(03-17)
- 采用信号调理IC驱动应变片电桥传感器(05-26)
- 基于nRF2401智能无线火灾监控系统设计(04-01)
- 家居安防无线监控报警系统(04-02)