微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 如何应用AndesCore EDM安全访问机制

如何应用AndesCore EDM安全访问机制

时间:01-30 来源:互联网 点击:
作者:沈永胜,技术副哩,晶心科技股份有限公司

EDM安全存取是AndesCoreTM内建的功能(option),应用在安全存取的控管。EDM安全存取有二种的控管方式:debug access indication和EDM access restriction。第一种控管方式(debug access indication)提供了一个sideband signal用于指示从调试器(Debug host)的请求。第二种控管方式, 控制AndesCoreTM的input port(edm_restrict_access )达到EDM存取的限制。更详细的内容在后续章节会有更深入的介绍。

1. EDM功能介绍

一个debug system包含一个debug host和一个target system。EDM主要的功能就是translate debug host发出的TAP指令来存取系统memory或是CPU。下图为基本的debug系统方块图。


图表1 基本的debug系统方块图

下图说明TAP 指令的种类


图表2 TAP 指令的种类

2. 控制EDM存取的限制

使用EDM的访问方式会被一个sideband signal (edm_restrict_access) 所影响。当这个signal值是high,仅仅只能对EDM MISC registers做读取的动作。而想要存取CPU/System Bus/Local Memory的动作将会被封锁住并且会得到下面的结果:

读为零写忽略

不正确的JTAG instruction(JTAG ICE debugger会timeout)

下图说明EDM限制存取方块图。


图表3 EDM限制存取方块图

在启用存取限制功能后,下图说明出每个TAP指令的行为。


图表4 在启用存取限制功能后,下图说明出每个TAP指令的行为

如何实现EDM存取限制,在系统设计上有很多种实现方法,以控制edm restrict access的signal。两种基本的设计方案说明如下:

eFUSE方式使用Chip重新编程管理控制

SOC方式使用软件管理控制

hardware实现控制edm_restrict_access的示意图如下:


图表5 hardware实现控制edm_restrict_access的示意图

software实现控制edm_restrict_access的例子如下:

sethi $r2,#0x80000

ori $r2,$r2,#0x8c

sethi $r3,#0x04030

ori $r3,$r3,#0x201

swi $r3,[$r2+#0]

3. EDM 存取指示

AndesCoreTM增加一个额外的sideband signal,xdebug_access(active-high),根据此sideband signal来决定request的host是否为EDM。而device就能根据此sideband signal决定是否要把request的data内容传回到host。

sideband signal的名称根据bus interface的类型而有所不同。对于AndesCoreTM处理器,基本的信号名称如下所示:

AHB/AHB-Lite => hdebug_access

APB => pdebug_access

EILM => eilm_debug_access

EDLM => edlm_debug_access

3.1.debug存取识别信号控制

当debug exception发生后,CPU将进入debug mode。然后CPU将会留在debug access mode直到CPU执行到IRET instruction并且trusted_debug_exit 是处于high后CPU将离开debug access mode,反之trusted_debug_exit如果是low,CPU将会保留在debug access mode。

实现控制trusted_debug_exit信号,有二种可供选择的方式如下:

trusted_debug_exit信号总是给high

增加一个权限管理逻辑去控制trusted_debug_exit信号是high或是low权限管理逻辑方块图如下所示:


图表6 权限管理逻辑方块图

如何控制trusted_debug_exit信号时序图如下所示:


图表7 如何控制trusted_debug_exit信号时序图

如下例子说明了如何产生trusted_debug_exit控制信号的verilog code:

The code example (Verilog) of trusted_debug_exit generation is described below:

//

//--- Utilize passcode to generate trusted_debug_exit in AHB Bus Controller

//* assume zero-wait-state AHB access



parameter AUTH_CODE = 32’h0a0b0c0d;

...

always @(posedge hclk or negedge hreset_n) begin

if (!hreset_n) begin

passcode_reg <= 32'd0;

end

else if (passcode_wen) begin //debugger enters passcode through debug access

passcode_reg <= hwdata[31:0];

end

end



//validate passcode to generate trusted_debug_exit

assign trusted_debug_exit = (passcode_reg == AUTH_CODE);

3.2.debug存取指示应用

下图说明AHB bus如何使用hdebug_access和验证逻辑来防止恶意的debug存取


图表8 AHB bus如何使用hdebug_access和验证逻辑来防止恶意的debug存取

如下verilog code说明了如何使用hdebug_access信号:

//--- Use hdebug_access to prevent malicious debug access in AHB Bus Controller

//* assume zero-wait-state AHB access



parameter IRRELEVANT_DATA = 32’hcafe0001;

parameter AUTH_CODE = 32’h01020304;



always @(posedge hclk or negedge hreset_n) begin

if (!hreset_n) begin

dbg_acc_d1 <= 1'b0;

end

else begin // data phase indication of debug access

dbg_acc_d1 <= hdebug_access;

end

end

...

always @(posedge hclk or negedge hreset_n) begin

if (!hreset_n) begin

passcode_reg <= 32'd0;

end

else if (passcode_wen) begin //debugger enters passcode through debug access

passcode_reg <= hwdata[31:0];

end

end



//validate passcode to check authentication

assign auth_check_fail = (passcode_reg != AUTH_CODE);

//return irrelevant data if the authentication check of debug access fails

assign hrdata_out = {32{data_read_en}} &

((dbg_acc_d1 & auth_check_fail) IRRELEVANT_DATA : normal_data_out);

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top