基于触摸传感器QTll01的触摸屏设计与实现
时间:12-08
来源:互联网
点击:
1 引言
传统的人机交流是通过键盘或鼠标来实现的,信息交换的速度比较慢,而且要求操作者具有一定的专业知识,这将使信息交流的目的大打折扣,因此需要一种非键盘、非鼠标的方式来沟通,其中最具有应用价值的就是触摸屏技术。
触摸屏技术是20世纪90年代初出现的一种新的人机交互作用技术,主要分为电阻式、电容式、红外线式和表面声波式。基本原理是用手指或其他物体触摸时,触摸屏控制器检测到触摸位置,并通过接口送到CPU,从而确定输入信息。触摸屏具有坚固耐用、反应速度快、节省空间、操作灵活、使用方便等优点,应用范围非常广阔,主要用于多媒体公共信息的查询,如电信局、银行等部门的业务查询,机场、车站、宾馆、旅游景点等的信息查询及商场、超市导购等;其次还可应用于领导办公、工业控制、军事指挥、电子游戏、多媒体教学等,此外,触摸屏正在走入家庭,如触摸屏电话机、智能电脑电话等。本文提出了一种基于触摸传感器QT1101的触摸屏设计方法,并详细叙述了其基本原理。
2 触摸屏设计
触摸屏的设计原理很简单,其主要器件是QTl101和单片机,QT1101完成按键的检测和确认,然后把检测到的按键信息送入单片机,单片机根据接收到的数据进行相应的处理。基本框图如图1所示。
该设计的核心部分是触摸传感器QTll01,因此了解其工作原理对设计有很大的帮助。
3 QTll01基本原理
QTl101电荷转移器件是一款独立的专利型数字控制器,它可以检测接近或触摸多达10个独立按键时的信号,QTl101的电极能发射穿透任何电介质(如玻璃或塑料)的独立感应场,并具有连续自校准功能,无需进行调整。它是专为诸如控制面板、控制设备、游戏设备、照明控制或者任何有机械开关或按钮的人机接口而设计的,还可以用于材料传感和控制应用,每一个信道可相对其他信道独立操作,通过调节相应的外部电容Cs,每个信道可以调整到一个特定的灵敏度电平,从而实现高度的灵活性。
Quantum的邻近按键抑制(AKS)专利技术能够抑制来自微弱信号的触摸,只允许检测到一个主要的按键触摸,避免由于手指覆盖到其他相邻的空键而影响使用。当使用小控制面板时这个功能尤其重要,因为手指可能接触不止一个按键。
扩频突发脉冲技术可以提供很好的噪声抑制。该器件的SYNC/LP引脚可以接类似器件或者外部信息同步,或者选择LP模式来节省功耗。
QTll01具有以下特点:
复位或重启后需要450 ms的校准初始化;
电荷转移(QT)设计的专利技术;
10个独立的QT传感通道(按键);
2.8 V~5.5 V的单电压供电;
在360 ms低功耗模式(LP)下,3 V电压消耗电流的典型值为40 μA;
100%全自动,不需要调整;
自动波特率的串行1线或2线接口完全无抖动;
扩频突发脉冲模式进行噪声抑制;
引脚能很好地抑制低频噪声;
滑动式应用中的“快速模式”;
32-QFN或48-SSOP无铅封装。
图2为QTll01的引脚排列(以32-QFN封装为例),表1为各个引脚的功能。
3.1 QTll01的引脚介绍
3.1.1 DETECT引脚
DETECT为10个按键的功能逻辑或,当触摸它时,可用于唤醒一个电池供电的产品。其输出极性和该引脚的驱动模式如表2所示。
3.1.2 CHANGE引脚
该引脚可以告知主机已经检测到了触摸状态的变化(如按键被触摸或断开),然后主机通过串行接口读取新的按键状态。当一个按键状态改变时,CHANGE变低,可以阻止传送重复数据,如果CHANGE未用,既使没有触摸的变化主机也要一直查询QT1l01。当检测到按键按下时,CHANGE变低并一直持续到主机通过串口查询到该按键,然后CHANGE被释放变为高,一直持续到按键状态的下一个变化(任何键变高或变低)。
CHANGE为漏极开路,需要通过一个100 kΩ的上拉电阻连接到VDD。
3.1.3 SYNC/LP引脚
如表3所示,SYNC/LP引脚的功能是根据SL_0和SL_l连接VDD还是VSS设定的。
(1) Sync模式
Sync模式允许调整突发脉冲与外部信号源(如主频率50/60 Hz)同步,抑制干扰,还可以使在相近地方工作的两个QT器件同步,这样当两个器件的2个或多个按键距离比较近时不会相互干扰。
SYNC输入是正脉冲触发,如果SYNC的输入没有改变,该器件将在150 ms之后以自激频率工作。当SYNC有触发脉冲时,器件则以A-B-C的顺序激活三个突发脉冲:
突发脉冲A:按键O,1,4,5
突发脉冲B:按键2,3,6,7
突发脉冲C:按键8,9
(2) 低功耗(LP)模式
在该模式下,功耗器件进入慢速模式,具有较低的功耗,三种标称的响应时间为:120ms,200ms和360ms。
当SYNC/LP引脚上有正脉冲时即进入LP模式,一旦检测到LP脉冲,器件就进入并维持这种微安模式直至感应到并确认了一次触摸之后,这时将自动转换为正常(全速)模式,其响应时间典型值一般小于40 ms(与突发脉冲时间有关)。当SYNC/LP维持为高或者收到另一个LP脉冲时,器件将重新进入LP模式。
响应时间的设置是由可选电阻SL_l和SL_2来决定的,较短的相应时间将具有较低的功耗。SYNC/LP的脉冲持续时间应大于150μs,如果SYNC/LP引脚被永久地置为高电平,器件在一个按键触摸时进入正常模式,而当按键状态检测完毕并被主机读取后又返回低电流模式。如果SYNC/LP被永久地置为低电平,器件将一直维持正常全速模式工作。
传统的人机交流是通过键盘或鼠标来实现的,信息交换的速度比较慢,而且要求操作者具有一定的专业知识,这将使信息交流的目的大打折扣,因此需要一种非键盘、非鼠标的方式来沟通,其中最具有应用价值的就是触摸屏技术。
触摸屏技术是20世纪90年代初出现的一种新的人机交互作用技术,主要分为电阻式、电容式、红外线式和表面声波式。基本原理是用手指或其他物体触摸时,触摸屏控制器检测到触摸位置,并通过接口送到CPU,从而确定输入信息。触摸屏具有坚固耐用、反应速度快、节省空间、操作灵活、使用方便等优点,应用范围非常广阔,主要用于多媒体公共信息的查询,如电信局、银行等部门的业务查询,机场、车站、宾馆、旅游景点等的信息查询及商场、超市导购等;其次还可应用于领导办公、工业控制、军事指挥、电子游戏、多媒体教学等,此外,触摸屏正在走入家庭,如触摸屏电话机、智能电脑电话等。本文提出了一种基于触摸传感器QT1101的触摸屏设计方法,并详细叙述了其基本原理。
2 触摸屏设计
触摸屏的设计原理很简单,其主要器件是QTl101和单片机,QT1101完成按键的检测和确认,然后把检测到的按键信息送入单片机,单片机根据接收到的数据进行相应的处理。基本框图如图1所示。

该设计的核心部分是触摸传感器QTll01,因此了解其工作原理对设计有很大的帮助。
3 QTll01基本原理
QTl101电荷转移器件是一款独立的专利型数字控制器,它可以检测接近或触摸多达10个独立按键时的信号,QTl101的电极能发射穿透任何电介质(如玻璃或塑料)的独立感应场,并具有连续自校准功能,无需进行调整。它是专为诸如控制面板、控制设备、游戏设备、照明控制或者任何有机械开关或按钮的人机接口而设计的,还可以用于材料传感和控制应用,每一个信道可相对其他信道独立操作,通过调节相应的外部电容Cs,每个信道可以调整到一个特定的灵敏度电平,从而实现高度的灵活性。

Quantum的邻近按键抑制(AKS)专利技术能够抑制来自微弱信号的触摸,只允许检测到一个主要的按键触摸,避免由于手指覆盖到其他相邻的空键而影响使用。当使用小控制面板时这个功能尤其重要,因为手指可能接触不止一个按键。
扩频突发脉冲技术可以提供很好的噪声抑制。该器件的SYNC/LP引脚可以接类似器件或者外部信息同步,或者选择LP模式来节省功耗。
QTll01具有以下特点:
复位或重启后需要450 ms的校准初始化;
电荷转移(QT)设计的专利技术;
10个独立的QT传感通道(按键);
2.8 V~5.5 V的单电压供电;
在360 ms低功耗模式(LP)下,3 V电压消耗电流的典型值为40 μA;
100%全自动,不需要调整;
自动波特率的串行1线或2线接口完全无抖动;
扩频突发脉冲模式进行噪声抑制;
引脚能很好地抑制低频噪声;
滑动式应用中的“快速模式”;
32-QFN或48-SSOP无铅封装。
图2为QTll01的引脚排列(以32-QFN封装为例),表1为各个引脚的功能。

3.1 QTll01的引脚介绍
3.1.1 DETECT引脚
DETECT为10个按键的功能逻辑或,当触摸它时,可用于唤醒一个电池供电的产品。其输出极性和该引脚的驱动模式如表2所示。

3.1.2 CHANGE引脚
该引脚可以告知主机已经检测到了触摸状态的变化(如按键被触摸或断开),然后主机通过串行接口读取新的按键状态。当一个按键状态改变时,CHANGE变低,可以阻止传送重复数据,如果CHANGE未用,既使没有触摸的变化主机也要一直查询QT1l01。当检测到按键按下时,CHANGE变低并一直持续到主机通过串口查询到该按键,然后CHANGE被释放变为高,一直持续到按键状态的下一个变化(任何键变高或变低)。
CHANGE为漏极开路,需要通过一个100 kΩ的上拉电阻连接到VDD。
3.1.3 SYNC/LP引脚
如表3所示,SYNC/LP引脚的功能是根据SL_0和SL_l连接VDD还是VSS设定的。

(1) Sync模式
Sync模式允许调整突发脉冲与外部信号源(如主频率50/60 Hz)同步,抑制干扰,还可以使在相近地方工作的两个QT器件同步,这样当两个器件的2个或多个按键距离比较近时不会相互干扰。
SYNC输入是正脉冲触发,如果SYNC的输入没有改变,该器件将在150 ms之后以自激频率工作。当SYNC有触发脉冲时,器件则以A-B-C的顺序激活三个突发脉冲:
突发脉冲A:按键O,1,4,5
突发脉冲B:按键2,3,6,7
突发脉冲C:按键8,9
(2) 低功耗(LP)模式
在该模式下,功耗器件进入慢速模式,具有较低的功耗,三种标称的响应时间为:120ms,200ms和360ms。
当SYNC/LP引脚上有正脉冲时即进入LP模式,一旦检测到LP脉冲,器件就进入并维持这种微安模式直至感应到并确认了一次触摸之后,这时将自动转换为正常(全速)模式,其响应时间典型值一般小于40 ms(与突发脉冲时间有关)。当SYNC/LP维持为高或者收到另一个LP脉冲时,器件将重新进入LP模式。
响应时间的设置是由可选电阻SL_l和SL_2来决定的,较短的相应时间将具有较低的功耗。SYNC/LP的脉冲持续时间应大于150μs,如果SYNC/LP引脚被永久地置为高电平,器件在一个按键触摸时进入正常模式,而当按键状态检测完毕并被主机读取后又返回低电流模式。如果SYNC/LP被永久地置为低电平,器件将一直维持正常全速模式工作。
触摸屏 电阻 电容 红外 电子 传感器 单片机 电压 电流 电路 振荡器 MCU 总线 相关文章:
- 基于手写辨识芯片的汉字手写输入技术(11-03)
- ATmega16与触摸屏的连接(03-01)
- 基于ADS7846的电阻式触摸屏接口设计(10-12)
- 移动显示技术发展及在未来手持设备中应用(11-17)
- 基于I2C的嵌入式多点触摸屏幕驱动设计(03-01)
- 基于多功能触笔的PC触摸屏系统(03-26)
