基于FPGA的数字下变频电路的设计与实现
时间:11-26
来源:互联网
点击:
低通滤波器的实现:
数字下变频器的最后一个模块是低通FIR滤波器,主要用来对信号进行整形滤波,消除信号中存在的噪声。本设计采用并行结构的FIR滤波器,由2个8阶滤波器级联实现16阶的滤波器,由预相加模块、查找表模块和移位相加模块组成,结构图如图3、4所示。
图3 16阶FIR滤波器的级联结构图
图4 FIR滤波器子模块结构图
图5 16阶FIR滤波器响应曲线图
图6 DDC实现的结构图
这种结构的滤波器结构简单、易于实现,很容易扩展成高阶滤波器。首先通过MATLAB中的Fir DesignTool工具得到滤波器的系数图表(表1)。利用线性FIR滤波器抽头系数的对称性,通过加法器将对称的系数进行预相加,从而降低硬件规模。根据分布式算法原理,通过将抽头系数的所有可能组合固化在ROM中,利用查找表来代替乘法器。利用预相加模块产生的地址来查找ROM表,并将相应的数值进行移位相加,从而得出正确的结果。
表1 16阶FIR滤波器系数
DDC系统的实现
利用上述的各个模块,可得到DDC系统的实现结构图如图6所示。
整个系统在Cyclone系列芯片EP1C6Q240C8上实现,其FPGA综合结果图7所示。
图7 DDC系统的Quartus综合结果
图8 系统时序测试结果
时序测试图(图8)中,黄色为系统时钟波形,绿色为NCO产生的正弦波时序波形,蓝色为抽取滤波器输出的时序波形,粉红色为FIR滤波器输出时序波形。从示波器显示的时序图可以看出抽取滤波器输出波形的延时最大,大约为14ns左右,这和软件仿真的结果比较吻合,仿真中抽取滤波器输出的延时为16.47ns。故抽取滤波器是制约系统时钟速率提高的关键因素。
结语
本文介绍了一种应用于数字化中频频谱分析仪的数字下变频电路,整个电路基于FPGA实现,结构简单,易于编程实现。
数字下变频器的最后一个模块是低通FIR滤波器,主要用来对信号进行整形滤波,消除信号中存在的噪声。本设计采用并行结构的FIR滤波器,由2个8阶滤波器级联实现16阶的滤波器,由预相加模块、查找表模块和移位相加模块组成,结构图如图3、4所示。
图3 16阶FIR滤波器的级联结构图
图4 FIR滤波器子模块结构图
图5 16阶FIR滤波器响应曲线图
图6 DDC实现的结构图
这种结构的滤波器结构简单、易于实现,很容易扩展成高阶滤波器。首先通过MATLAB中的Fir DesignTool工具得到滤波器的系数图表(表1)。利用线性FIR滤波器抽头系数的对称性,通过加法器将对称的系数进行预相加,从而降低硬件规模。根据分布式算法原理,通过将抽头系数的所有可能组合固化在ROM中,利用查找表来代替乘法器。利用预相加模块产生的地址来查找ROM表,并将相应的数值进行移位相加,从而得出正确的结果。
表1 16阶FIR滤波器系数
DDC系统的实现
利用上述的各个模块,可得到DDC系统的实现结构图如图6所示。
整个系统在Cyclone系列芯片EP1C6Q240C8上实现,其FPGA综合结果图7所示。
图7 DDC系统的Quartus综合结果
图8 系统时序测试结果
时序测试图(图8)中,黄色为系统时钟波形,绿色为NCO产生的正弦波时序波形,蓝色为抽取滤波器输出的时序波形,粉红色为FIR滤波器输出时序波形。从示波器显示的时序图可以看出抽取滤波器输出波形的延时最大,大约为14ns左右,这和软件仿真的结果比较吻合,仿真中抽取滤波器输出的延时为16.47ns。故抽取滤波器是制约系统时钟速率提高的关键因素。
结语
本文介绍了一种应用于数字化中频频谱分析仪的数字下变频电路,整个电路基于FPGA实现,结构简单,易于编程实现。
频谱分析仪 DSP FPGA 振荡器 滤波器 低通滤波器 VHDL Quartus 示波器 仿真 电路 相关文章:
- DSP滤波器用于扩展数字化仪器性能分析(09-25)
- 基于DDS的频谱分析仪的设计与应用(10-29)
- 在示波器上使用DSP滤波技术的优缺点(11-25)
- 宽带多速率解调器的设计与实现(11-25)
- TMS320C6713 DSP在音乐喷泉控制系统中的应用(11-27)
- 如何为你的定时应用选择合适的基于PLL的振荡器(07-30)