微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 在示波器上使用DSP滤波技术的优缺点

在示波器上使用DSP滤波技术的优缺点

时间:11-25 来源:互联网 点击:
带宽增强滤波技术

带宽增强滤波技术有时也称为“带宽提升技术”,可能是最不直观的DSP滤波技术。目前某些高带宽实时示波器中采用了这种技术。一旦硬件已经衰减信号,怎样才能增强系统的带宽呢?答案很简单,使用软件把信号放大。一旦把数字化信号分成各种正弦波频率成分,那么可以使用软件选择性地“放大”个别频率成分,把衰减的频率成分,用软件滤波方法将示波器–3dB点频响点提升到更高的频率,如图10所示。本图中的红色曲线(底部)显示了典型的硬件频响。绿色曲线(顶部)表示带宽增强滤波器,蓝色曲线(中间)表示改进的系统带宽响应,可以看到,带宽已经“被提升到”更高的频率。除提高带宽外,这种特定滤波器还为示波器生成更陡峭的滚降特点,帮助降低高频噪声,在测试带外输入信号时帮助消除假信号。



图10:带宽增强滤波技术

这里也有一个很大的缺点。我们已经提到,示波器是一种宽带仪器,仪器的本底噪声可能会明显恶化测量结果。带宽增强滤波技术同时也放大了仪器的本底噪声。因此,在使用示波器FIR DSP滤波器的带宽增强功能时,会影响信噪比。

尽管带宽增强滤波技术在当前某些带宽较高的实时示波器中是一种相当新的功能,但这在测试测量业内并不是一种新技术。多年来,安捷伦一直在网络分析仪和频谱分析仪中使用带宽增强技术。事实上,安捷伦在使用20GHz 取样示波器中,很早就已经采用这种技术,进行TDR测量时仿真更快的边沿速率。这种技术在当前具有TDR测量功能的取样示波器中称为“归一化”。



图11: 没有采用带宽增强技术时测量的上升时间

图11是使用6GHz 示波器测量带外信号的实例。输入信号具有大约50 ps的上升时间 (10% - 90%)。但由于示波器硬件的上升时间指标是70 ps,我们的测量结果为74 ps。通过使用7 GHz带宽增强滤波技术,我们现在可以进行更精确的测量,测量结果为66 ps,如图12所示。但是,可以看到这一波形顶部和底部的基线噪声已经提高。在标准6 GHz带宽模式下,示波器的本底噪声在100mV/格设置时测得的结果约为3 mV RMS。在使用7 GHz带宽增强滤波技术时,本底噪声提高到大约6 mV RMS。



图12:使用7-GHz带宽增强技术时测量的上升时间

在Agilent 54855A示波器上使用带宽增强DSP滤波技术的另一个优点是,可以使用8GHz的有源高阻探头,以实现高达7GHz的系统带宽进行测量。

总结

当前许多工程师一般信任硬件滤波技术,而怀疑DSP滤波技术,因为后者基于软件。我们在本应用指南中已经阐述,在示波器波形上采用DSP滤波的目的是校正硬件滤波误差。软件滤波不应视为一种不真实的处理方式,而更应看作一种数据还原方式。重要的是,您要清楚DSP滤波技术有没有带来副作用,若有,有那些。多年来,我们使用软件校正示波器中的硬件误差,包括增益/偏置校准及信道之间的偏移校正时延。还可以使用软件,校正采用DSP滤波技术时更加复杂的与频率相关的硬件误差来源。

本应用指南中讨论的部分滤波器特点拥有很小的副作用或没有副作用,如幅度平坦和相位校正滤波技术。正因如此,在Agilent 54855A示波器以最大取样速率取样时(20GSa/s),用户不能选择这些特定的滤波器特点,而是作为默认操作方式使用。因为我们相信sin(x)/x 波形重建滤波会改善测量精度和显示质量,因此这一特定的滤波器特点也作为示波器的默认工作模式使用,但用户可以简便地禁止这种功能。使用sin(x)/x滤波的主要副作用是降低示波器响应速率。

示波器 FIR DSP滤波器的其它特点(包括减噪和带宽增强滤波)对带宽和本底噪声的影响非常明显。正因如此,这两种滤波器特点都没有作为默认的示波器工作模式,用户必须启动这些功能才能使用。

一旦了解了某些滤波类型中固有的问题,那么您就可以放心使用DSP滤波技术,改善实时示波器的精度和分辨率,并清楚何时应避免使用DSP滤波技术。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top