微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 在示波器上使用DSP滤波技术的优缺点

在示波器上使用DSP滤波技术的优缺点

时间:11-25 来源:互联网 点击:
幅度平坦滤波技术

幅度平坦滤波用来校正示波器硬件中的非平坦频响。在理想情况下,示波器应拥有完美的平坦硬件响应,直到示波器的自然带宽滚降点,如图2中的曲线所示。这意味着如果您测量幅度不变、但频率变化的正弦波,应一直测量相同的幅度,直到接近滚降频点。遗憾的是,在接近示波器的带宽极限时,频率响应的平坦度趋于恶化。通常情况下,硬件本身会导致的信号在某些频点上衰减,某些频点上则出现幅值放大。事实上,示波器设计工程师通常会在示波器硬件中的带宽极限附近故意引入幅值放大,以补偿频率相关的幅值衰减,把示波器推到更高的带宽频响上。

图3中的红色曲线(顶部)显示了Agilent 54855A实时6 GHz示波器的典型硬件频响。可以看到,这一示波器的硬件响应满足了6 GHz的–3dB硬件模拟带宽标准,但响应还在大约3.5 GHz上显示了约+1dB的峰值,在大约5.5 GHz上显示了接近+2dB的峰值。当前没有示波器制造商指定示波器频响的平坦度。示波器指定的唯一频域指标是–3dB带宽点。即使示波器拥有+6dB的峰值,这在某些带内频率上相当于60%的幅度误差,只要–3dB点高于指定带宽,那么示波器就会被视为符合规范。但与较高频率的衰减会恶化测量精度一样,幅度放大也会恶化测量精度。



图3: 幅度平坦滤波器响应

图3中的蓝色曲线(底部)显示了使用幅度平坦滤波技术时54855A校正后的幅度频响。通过这种DSP/软件滤波器,在接近6 GHz带宽前,示波器的校正频响偏差一般会低于+/- 0.5dB,该FIR滤波器是始终存在的,不可已被去掉,示波器在以最大取样速率取样时,它一直在起作用,以校正硬件滤波误差。软件滤波器和硬件滤波器相结合,测量精度要高于单纯硬件滤波器产生的测量精度。

相位校正滤波技术



图4: 同相谐波

高速数字信号由多个频率成分组成,包括基波和谐波。在理想情况下,数字信号的基波和谐波是严格同相的,各频率成分之间没有相差或时延,如图4所示。遗憾的是,示波器的硬件在高速信号的高阶成分中引入了相移,只能通过大幅提高仪器模拟带宽或使用相位校正DSP滤波技术来消除这种影响。图5显示了五次谐波(绿色曲线)相对基波和三次谐波有时延的实例。结果是在示波器显示屏上出现失真的波形显示。如果没有相位校正技术,这种失真通常会在波形显示中表现为过高的过冲,同时边沿速率会下降。高速数字设计人员通常会忽视失真的过冲成分,认为测得的过冲实际上出现在测得的输入信号上。但事实可能并非如此,实际可能是硬件能力不够而导致的测量误差。



图5: 延迟的第5个谐波

图6中的红色曲线显示了54855A硬件在较高输入频率上导致的典型频率相关相位误差。本图中的蓝色曲线显示了使用相位校正DSP/软件滤波技术得到的校正后的相位响应。可以看出,这个软件滤波器把相位误差校正到远远超过仪器的带宽指标。



图6: 校正的和没有校正的相位响应

图7是对基于高阶最大平坦响应的6GHz硬件系统,使用相位校正和没有使用相位时校正的快速边沿信号的仿真图。在相位校正波形(左边/红色曲线)中可以注意到波形上存在下冲和过冲,而这些下冲和过冲实际上并不存在,该测量结果表明被测信号超过示波器–3dB带宽频点,而且该示波器采用了线性相位系统响应。右边的蓝色波形是没有相位校正的示波器测量的结果,可以看出,虽然没有下冲,但其上冲却非常高。相位校正波形(左边/红色曲线)中,顶部和底部的过冲误差得到整体改善。而且最重要的是,使用相位校正技术,对带内信号或带外信号的定时测量,如上升时间和下降时间的精度要高得多。在Agilent 54855A示波器中,该相位校正滤波器是不可以被去掉的,以保证对硬件相位误差进行校正。



图7: 使用相位校正及没有使用相位校正 时的脉冲响应

减噪滤波技术

正如您所预期的那样,减噪滤波技术会降低示波器本底噪声的影响。示波器是宽带仪器,带宽越高,本底噪声越高。这种硬件导致的误差在宽带仪器中是不可避免的。通过Agilent 54855A示波器,您可以选择减噪滤波器,改善测量精度,它是通过在很宽的范围内设置带宽限制来实现的。



图8: 未采用降噪滤波器,测得的本底噪声为2.8 mV RMS

图8是在没有使用减噪滤波技术时,使用6-GHz带宽54855A示波器捕获1 GHz正弦波的实例。通过使用无限余辉显示模式,在累积采集1000次以后,我们在这个捕获的正弦波上看到示波器的硬件本底噪声导致的噪声,大约2.8 mV RMS。上面/黄色曲线是100mV/格时放大到接近满量程的输入信号。下面/绿色曲线显示了对波形峰值部分进行放大10倍后显示。



图9:降噪滤波器参数设置为2 GHz,测得的本底噪声为1.6 mV RMS

图9显示了相同的1 GHz正弦波,但现在是使用2 GHz带宽减噪滤波器。在累积采集1000次以后,我们看到由于系统本底噪声降低了近一半。这里,上方/黄色曲线仍显示了100 mV/格时放大的输入信号,下方/黄色曲线显示了对波形峰值部分进行放大10倍后显示,因此我们可以更清楚地看到使用减噪滤波技术后,示波器本底噪声大幅下降。

在测试带宽较低的信号或边沿速率相对较慢的信号时,采用减噪滤波技术通常会增强幅度测量和时间相关测量的精度。如在测量抖动时,抖动测量误差成分中最大、但经常被忽视的是垂直噪声导致的抖动/定时误差。垂直噪声和时间相关测量误差之间具有直接关系,是信号斜率(slew rate)的函数。尽管难以很直观地解释这一技术,但确实在测量带内信号时,降低测量系统带宽实际上会改善抖动测量的精度。启动减噪滤波会自动降低仪器本底噪声导致的抖动。由于提升带宽与降低本底噪声相矛盾,在Agilent 54855A 示波器中,我们让用户可以选择是否使用减噪滤波。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top