利用低功耗微控制器开发FFT应用
时间:09-03
来源:互联网
点击:
复数的极坐标转换
为了便于确定VIN频谱的幅度,我们须要将复数形式的X(k)转换为极坐标形式。实现该转换的固件示于程序清单5。幅度值取代了原始的FFT结果,因为固件不再需要这些数据。
清单5. FFT结果从复数形式转换为极坐标形式。
const unsigned char magnLUT[16][16] =
{
{0x00,0x10,0x20, ... ,0xd0,0xe0,0xf0},
{0x10,0x16,0x23, ... ,0xd0,0xe0,0xf0},
...
{0xe0,0xe0,0xe2, ... ,0xff,0xff,0xff},
{0xf0,0xf0,0xf2, ... ,0xff,0xff,0xff}
};
...
...
/* Compute x_n_re=abs(x_n_re) and x_n_im=abs(x_n_im) */
...
...
x_n_re[0] = magnLUT[x_n_re[0]>>11][0];
for(i=1; i<n_div_2; i++)
x_n_re[ i] = magnLUT[x_n_re[ i]>>11][x_n_im[ i]>>11];
x_n_re[N_div_2] = magnLUT[x_n_re[N_div_2]>>11][0];
频谱幅度并非根据式4计算得到,而是通过一个二维LUT查表得到。第一索引为频谱实部的高4位(MSB),第二索引为频谱虚部的高4位。为得到这些数据,可将带符号的16位数据右移11次。在从频谱的实部和虚部取得索引号前,需首先将它们转换为绝对值。因此,符号位为零。
从式6我们已经知道,频谱的幅度是关于X(N / 2)对称的,因此我们只需将前(N / 2) + 1个频谱数据转换为极坐标形式。还有,我们可以看到,对于实数输入采样,X(0)和X(N / 2)的虚部总为零。因此这两条谱线的幅度被单独计算。本项目实际固件的注释中包含了用于自动生成该LUT的源代码,可由程序调用来计算X(k)的幅度。
Hamming或Hann窗
此项目固件还包括了对输入采样加Hamming或Hann窗的LUT (Q8.7格式)。加窗函数可有效降低对时域采样x(n)的舍入操作所引起的频谱泄漏。Hamming和Hann窗函数分别如式7和8所示。
程序清单6给出了实现这些函数的代码。同样,本项目实际固件的注释中包含了用于自动生成这些LUT的源代码,可由程序调用来实现这些窗函数。
清单6. 用来实现Hamming和Hann窗函数的LUT。
const char hammingLUT[N] = {+10, +10, +10, ... ,+10, +10, +10};
const char hannLUT[N] = { +0, +0, +0, ... , +0, +0, +0};
...
...
for(i=0; i<256; i++)
{
#ifdef WINDOWING_HAMMING
MUL_1(x_n_re[ i],hammingLUT[ i],x_n_re[ i]); // x(n)*=hamming(n);
#endif
#ifdef WINDOWING_HANN
MUL_1(x_n_re[ i],hannLUT[ i]),x_n_re[ i]); // x(n)*=hann(n);
#endif
}
测试结果
为了测试该FFT应用的性能,固件将X(k)幅度通过μC的UART端口上传给PC。专门编写的FFT Graph软件(随该项目固件一起提供)用于从PC串口读取这些幅值,并以图形方式实时显示频谱。图3显示了μC以200ksps采样四种不同输入信号并处理后,由FFT Graph所显示出来的结果:
4.3V直流信号
50kHz正弦信号
70kHz正弦信号
6.25kHz方波
图3. FFT Graph软件显示的由低功耗μC计算出的频谱。
接下来干什么?
有兴趣的读者还可以花费大量的时间来继续优化和重新配置该FFT应用。尽管在本文中我们选择了radix-2算法,还有很多其他算法可以显著降低加法和乘法运算量。很多本文所未提及的优化可以提升FFT的速度。例如,作为纯实数的输入采样,其虚部总为零,频谱中只有前半部分有实际意义。利用这一点,第一级和最后一级FFT的执行速度可进一步优化,但需要付出更多的程序空间。
总之,本文所讨论的算法对于低功耗μC上的FFT应用而言,提供了一个很好的出发点。如果想了解更多信息和具体实现的细节,请查阅我们为本应用所提供的、带有详细注释的固件信息。
为了便于确定VIN频谱的幅度,我们须要将复数形式的X(k)转换为极坐标形式。实现该转换的固件示于程序清单5。幅度值取代了原始的FFT结果,因为固件不再需要这些数据。
清单5. FFT结果从复数形式转换为极坐标形式。
const unsigned char magnLUT[16][16] =
{
{0x00,0x10,0x20, ... ,0xd0,0xe0,0xf0},
{0x10,0x16,0x23, ... ,0xd0,0xe0,0xf0},
...
{0xe0,0xe0,0xe2, ... ,0xff,0xff,0xff},
{0xf0,0xf0,0xf2, ... ,0xff,0xff,0xff}
};
...
...
/* Compute x_n_re=abs(x_n_re) and x_n_im=abs(x_n_im) */
...
...
x_n_re[0] = magnLUT[x_n_re[0]>>11][0];
for(i=1; i<n_div_2; i++)
x_n_re[ i] = magnLUT[x_n_re[ i]>>11][x_n_im[ i]>>11];
x_n_re[N_div_2] = magnLUT[x_n_re[N_div_2]>>11][0];
频谱幅度并非根据式4计算得到,而是通过一个二维LUT查表得到。第一索引为频谱实部的高4位(MSB),第二索引为频谱虚部的高4位。为得到这些数据,可将带符号的16位数据右移11次。在从频谱的实部和虚部取得索引号前,需首先将它们转换为绝对值。因此,符号位为零。
从式6我们已经知道,频谱的幅度是关于X(N / 2)对称的,因此我们只需将前(N / 2) + 1个频谱数据转换为极坐标形式。还有,我们可以看到,对于实数输入采样,X(0)和X(N / 2)的虚部总为零。因此这两条谱线的幅度被单独计算。本项目实际固件的注释中包含了用于自动生成该LUT的源代码,可由程序调用来计算X(k)的幅度。
Hamming或Hann窗
此项目固件还包括了对输入采样加Hamming或Hann窗的LUT (Q8.7格式)。加窗函数可有效降低对时域采样x(n)的舍入操作所引起的频谱泄漏。Hamming和Hann窗函数分别如式7和8所示。
程序清单6给出了实现这些函数的代码。同样,本项目实际固件的注释中包含了用于自动生成这些LUT的源代码,可由程序调用来实现这些窗函数。
清单6. 用来实现Hamming和Hann窗函数的LUT。
const char hammingLUT[N] = {+10, +10, +10, ... ,+10, +10, +10};
const char hannLUT[N] = { +0, +0, +0, ... , +0, +0, +0};
...
...
for(i=0; i<256; i++)
{
#ifdef WINDOWING_HAMMING
MUL_1(x_n_re[ i],hammingLUT[ i],x_n_re[ i]); // x(n)*=hamming(n);
#endif
#ifdef WINDOWING_HANN
MUL_1(x_n_re[ i],hannLUT[ i]),x_n_re[ i]); // x(n)*=hann(n);
#endif
}
测试结果
为了测试该FFT应用的性能,固件将X(k)幅度通过μC的UART端口上传给PC。专门编写的FFT Graph软件(随该项目固件一起提供)用于从PC串口读取这些幅值,并以图形方式实时显示频谱。图3显示了μC以200ksps采样四种不同输入信号并处理后,由FFT Graph所显示出来的结果:
4.3V直流信号
50kHz正弦信号
70kHz正弦信号
6.25kHz方波
图3. FFT Graph软件显示的由低功耗μC计算出的频谱。
接下来干什么?
有兴趣的读者还可以花费大量的时间来继续优化和重新配置该FFT应用。尽管在本文中我们选择了radix-2算法,还有很多其他算法可以显著降低加法和乘法运算量。很多本文所未提及的优化可以提升FFT的速度。例如,作为纯实数的输入采样,其虚部总为零,频谱中只有前半部分有实际意义。利用这一点,第一级和最后一级FFT的执行速度可进一步优化,但需要付出更多的程序空间。
总之,本文所讨论的算法对于低功耗μC上的FFT应用而言,提供了一个很好的出发点。如果想了解更多信息和具体实现的细节,请查阅我们为本应用所提供的、带有详细注释的固件信息。
- F1aSh存储器在TMS320C3X系统中的应用(11-11)
- 基于PIC18F系列单片机的嵌入式系统设计(11-19)
- DSP在卫星测控多波束系统中的应用(01-25)
- 基于PCI总线的双DSP系统及WDM驱动程序设计(01-26)
- 利用Virtex-5 FPGA实现更高性能的方法(03-08)
- DSP与单片机通信的多种方案设计(03-08)