低成本的表面贴PIN管的Pi型衰减器设计
简介
模拟衰减器在射频以及微波网络方面得到了很广泛的应用。无论是采用砷化镓微波集成电路(GaAs MMICs)还是采用PIN管的网络,它们都是通过电压来控制射频信号的功率的。在商业应用中,比如蜂窝电话网,个人通信网络,无线局域网以及便携式无线电等,衰减器的造价是设计中的一个重要因素。本文描述了一种利用塑胶封装的表面贴片设计的低造价、宽频带的PIN管Pi型衰减器。
背景
图1描绘了基本的Pi型衰减器以及它的设计方程。调整分流电阻R1和串联电阻R3以满足衰减值A=20 log(K),同时提供与系统特性阻抗匹配的输入输出阻抗。当PIN管工作在高于其截止频率fc(见附录A)时,它可以用作为流控可变电阻。故可用三个PIN管代替Pi型电路中的固定电阻来构造一个可变衰减器。
作为一个例子,图2给出了一个由三个PIN管构成的衰减器,这个电路在10MHZ到500MHZ的频率范围内有良好的性能。然而,在Pi型电路中用三个PIN管作为三个可变电阻导致了网络的不对称,这就使偏置电路相当复杂。
4个PIN管组成的Pi型衰减器
如图3,如果用两个PIN管来代替电阻R3,会有很多好处。首先,由于网络的最大隔离度是由串联的PIN管决定的,用两个PIN管取代一个管子将提高衰减的最大值,或是在一定的衰减量下使频率上限增加一倍。第二,代替串联电阻的两个PIN管180度反相工作,使得偶数阶的非线性产物得以抵消。第三,构成的衰减器网络是对称的,而且偏置电路非常简单。V+是一固定电压,Vc是控制网络衰减量的可变电压。采用两个串联PIN管代替一个管子的唯一负面影响就是导致插损的轻微增加,合计小于0.5dB。R1和R2分别作为串联PIN管D2和D3的偏流电阻,它们必须做得足够高以减小插损;然而,如果它们作得太高,就需要非常高的控制电压Vc。如果设计者不需要很大的带宽的话,可以通过在R1和R2及RF线之间加装一些扼流圈来改善插损特性,这些电感可以降低网络射频部份的电阻。R3和R4的选择视具体的PIN管而定;选择合适的话,它们将在串联与并联的PIN管之间提供恰当的电流分配,以保持在整个衰减动态范围内的良好的阻抗匹配特性。虽然我们可以通过分析计算来确定R1和R4的阻值,但由经验来确定它们显然更快更简单。
惠普的HSMP-3810系列表面装置PIN二极管有良好的线性,较低的截止频率和较低的价格。为了节省成本和板子空间,我们选择了两个共阴极的HSMP-3814来代替四个单独的HSMP-3810 PIN管。在选择了管子,V+=5V及0≤Vc≤15V后,R1和R4可以由经验值确定。测试电路中所有组件的指标都在图3中给出。
如图5示,衰减器装在一个2平方英尺的0.032’’厚的HT-2 PC板上。这种材料相对传统的FR4有较高的性能,在附录B中对它有详细的介绍。使用贴片电阻和电容,如图5所示,完整的衰减器占用了0,5平方英尺的空间。
测试结果
图6给出了不同控制电压值下测量的衰减量与频率的关系曲线。在300KHZ到3GHZ范围内获得了良好的性能。图7给出了在Vc取最大值和最小值时回波损耗与频率的关系曲线。Vc取其它值时,回波损耗将更高,Vc=0时的数据是最坏情况下的结果。图8给出了在一系列频率下衰减量与控制电压之间的关系曲线。最后,图9给出了衰减器的交调失真曲线。数据以三阶截取点给出,关于截取点的详细解释,请参考附录C。
结论
从测试数据中,我们可以看出,4个PIN管的Pi型衰减器提供了很好的匹配特性,和在极宽的频带下的很平坦的衰减度。此外由于使用表面贴片设计,它还有低成本的优点。
附录A-PIN管的截止频率
PIN管通常当作流控RF电阻使用。然而,这个模型仅在管子工作在其截止频率fc以上才准确,fc=1/2πτ,其中τ是管子中少数载流子的生存周期。工作在十倍于fc的频率上,PIN管可以准确的设计为一个流控电阻,相当于一个小的结电容(忽略管壳的寄生电容参量)。在0.1fc以下的频率工作时,PIN管的特性就相当于一个PN结二极管。当工作在0.1fc到10fc之间时,它的特性变得非常复杂;通常它表现为一个随频率变化的电阻,随电流变化的电感或电容。另外,在这个频率范围内工作时,管子的非线性特性较差。HSMP-3810系列的管子τ=1500nsec,故截止频率为100KHZ。这个管子应在1MHZ以上频率工作时表现为一个随频率变化的纯电阻。然而,由于管子被优化用于宽带的衰减器,所以它在fc以下工作时的特性仍然很好,图6给出了工作在300KHZ时的测量数据。
附录B-板子材料
许多印刷板通常采用这两类材料:FR4和PTFE(聚四氟氯乙烯)。前者的机械强度和稳定性较好,而且价格较低。但是,它引入的损耗很高,而且介电常数难以控制,有很