基于PNX1500的嵌入多媒体平台
时间:07-22
来源:互联网
点击:
2.7 音频输入输出
我们选择了具有回声消除功能的音频编解码芯片MSM7731,它与PNX1500的接口是通过PNX1500的音频输入输出模块连接的。如图6所示。
音频部分的设置有几点需要注意:将PNX1500的音频输出单元(AO)作为主控器,由其输出时钟和帧同步信号,将MSM7731和PNX1500的音频输入单元(AI)作为从设备,其位同步信号和帧同步信号由外界传来。AO_CLK和AO_WS通过设置分频系数从PNX1500的PLL处得到。
配置音频编解码芯片,音频编解码芯片的配置接口分为两种,一种通过管脚外接上拉或下拉的电阻来设定参数,由于管脚有限,所以这种方法能配置的参数均为基本参数,功能有限。另一种方法是通过单片机MCU来控制,其接口信号为串行的同步信号。我们在系统上添加一款单片机来配置该音频解码芯片。
2.8 网络部分
选用National Semiconductor公司的DP83847作为MAC层上的设备。由于DP83847与PNX1500之间有很好的硬件兼容,故不再介绍两者之间的硬件链接。值得注意的是,DP83847的状态指示LED引脚和DP83847物理地址引脚是共用的,所以一定要用上拉或下拉电阻配置。主要的驱动函数如下。
2.9 电源系统
PNX1500的电源系统相对复杂,其核心电压为1.2V,内存操作模块工作电压为2.5V,其余模块都工作在3.3V。作为一个嵌入式平台,希望外接电源的电压总数越少越好,所以我们平台上运用了DC-DC器件,将单一的外界电源5V转换为系统所需要的多种电压。值得注意的是,由于平台上芯片和器件比较多,需要将每件器件的工作电流峰值之和作为DC-DC器件的电流参数。我们选用ST公司的LD1580芯片,这款芯片的特点是能提供最大7A的电流,输出电压范围大,由外接匹配电阻决定输出电压。一共三个LD1580芯片组成本系统,首先外接直流电源5V被LD1580转换为3.3V,然后3.3V由两个LD1580分别转换为1.2V和2.5V。电源部分电路图和输出电压计算公司如图7,其中VREF为2.5V。
此外,由于系统各芯片具有大量的I/O口,在这些I/O口进行高低电平转换时,会瞬间产生大的电流变化量,由于电路板并不是一个理想导体,存在电感效应,在电流变化过快时会产生电压差,导致误动作,所以需要在电源的电和地之间加上低阻抗通道消除电感效应带来的电压差。我们在电源的电和地之间并联220微法到100纳法的多个旁路电容,消除不同频率的电压跳变。同时对板上各个芯片的电脚也加以旁路电容。
3 印刷电路设计
由于本系统有模拟和数字信号混合,器件繁多,电压复杂,如何保证系统能够稳定工作成为需要着重考虑的问题。本系统采用10层设计,每个信号层之间由电层或者地层隔开,模拟地与数字信号的地信号分开,同时在布局的时候考虑芯片电流回流问题,防止串扰。
本文介绍了基于飞利浦多媒体DSP PNX1500的嵌入式多媒体平台的硬件设计和低层驱动。该平台能性能稳定,工作良好,具有很好的应用前景。
我们选择了具有回声消除功能的音频编解码芯片MSM7731,它与PNX1500的接口是通过PNX1500的音频输入输出模块连接的。如图6所示。
音频部分的设置有几点需要注意:将PNX1500的音频输出单元(AO)作为主控器,由其输出时钟和帧同步信号,将MSM7731和PNX1500的音频输入单元(AI)作为从设备,其位同步信号和帧同步信号由外界传来。AO_CLK和AO_WS通过设置分频系数从PNX1500的PLL处得到。
配置音频编解码芯片,音频编解码芯片的配置接口分为两种,一种通过管脚外接上拉或下拉的电阻来设定参数,由于管脚有限,所以这种方法能配置的参数均为基本参数,功能有限。另一种方法是通过单片机MCU来控制,其接口信号为串行的同步信号。我们在系统上添加一款单片机来配置该音频解码芯片。
2.8 网络部分
选用National Semiconductor公司的DP83847作为MAC层上的设备。由于DP83847与PNX1500之间有很好的硬件兼容,故不再介绍两者之间的硬件链接。值得注意的是,DP83847的状态指示LED引脚和DP83847物理地址引脚是共用的,所以一定要用上拉或下拉电阻配置。主要的驱动函数如下。
2.9 电源系统
PNX1500的电源系统相对复杂,其核心电压为1.2V,内存操作模块工作电压为2.5V,其余模块都工作在3.3V。作为一个嵌入式平台,希望外接电源的电压总数越少越好,所以我们平台上运用了DC-DC器件,将单一的外界电源5V转换为系统所需要的多种电压。值得注意的是,由于平台上芯片和器件比较多,需要将每件器件的工作电流峰值之和作为DC-DC器件的电流参数。我们选用ST公司的LD1580芯片,这款芯片的特点是能提供最大7A的电流,输出电压范围大,由外接匹配电阻决定输出电压。一共三个LD1580芯片组成本系统,首先外接直流电源5V被LD1580转换为3.3V,然后3.3V由两个LD1580分别转换为1.2V和2.5V。电源部分电路图和输出电压计算公司如图7,其中VREF为2.5V。
此外,由于系统各芯片具有大量的I/O口,在这些I/O口进行高低电平转换时,会瞬间产生大的电流变化量,由于电路板并不是一个理想导体,存在电感效应,在电流变化过快时会产生电压差,导致误动作,所以需要在电源的电和地之间加上低阻抗通道消除电感效应带来的电压差。我们在电源的电和地之间并联220微法到100纳法的多个旁路电容,消除不同频率的电压跳变。同时对板上各个芯片的电脚也加以旁路电容。
3 印刷电路设计
由于本系统有模拟和数字信号混合,器件繁多,电压复杂,如何保证系统能够稳定工作成为需要着重考虑的问题。本系统采用10层设计,每个信号层之间由电层或者地层隔开,模拟地与数字信号的地信号分开,同时在布局的时候考虑芯片电流回流问题,防止串扰。
本文介绍了基于飞利浦多媒体DSP PNX1500的嵌入式多媒体平台的硬件设计和低层驱动。该平台能性能稳定,工作良好,具有很好的应用前景。
嵌入式 DSP 总线 电阻 Atmel 解码器 单片机 MCU LED 电压 电流 电路图 电路 电感 电容 相关文章:
- 支持汽车电子的嵌入式软件编程接口库设计(11-29)
- 用IXP网络处理器设计的数字家庭媒体中心系统 (02-12)
- 基于DSP和CPLD的智能相机系统设计与研制(08-19)
- 基于DM642嵌入式无线视频监控硬件设计 (10-15)
- 基于AD7892SQ和CPLD的数据采集系统的设计(11-10)
- 嵌入式向产业上游迈进(01-06)