用触发和同步数字化仪来采集正确的数据
时间:03-17
来源:互联网
点击:
作者: Arthur Pini,Greg Tate,Oliver Rovini
对于采集信号并进行数字化处理的任何仪器来说,触发都是一个很重要的功能。如果不能根据特定波形特征进行触发,你可能永远看不到数字化波形中的感兴趣点。数字化仪可以用多种模式采集数据。环形缓冲器或正常模式工作时就像数字示波器一样。采集的数据被加载进环形缓冲器。当触发发生时,允许后置触发器延时的数据被锁定用于显示和处理。数字化仪还支持流采集模式,在这种模式下数字化仪采集、数字化并连续存储波形。因此触发器并不指示波形的起始位置,而是特定特征发生的时间点。不管是哪种模式,你都可以看到感兴趣事件之前和之后发生的事情。
最常见的触发方法是使用数字化仪某个通道的输入信号。基本原理是,检测到波形上一个定义好的点,将这个“触发事件”标记为采集数据上的一个已知位置。图1提供了一个基本的边沿触发例子。信号源是输入通道,触发事件发生在波形上升沿越过500mV触发电平之时。当触发事件发生时,所采信号上的位置被标记为时间轴上的零时间点,如图中的光标位置所示。如果信号是重复的,数字化仪将在每次采集新数据时在相同点进行触发,从而实现稳定的显示。
图1:基本的边沿触发,它定义了时间轴上的零时间点(用垂直虚线标记),触发事件发生在波形上升沿越过触发电平(水平虚线)之时。
信号波形、电平和时序的宽范围变化要求数字化仪的触发电路非常灵活。图2显示了Spectrum M4i系列数字化仪的触发“引擎”框图。它提供了现代数字化仪支持的宽范围触发条件例子。
图2:Spectrum M4i数字化仪框图展示了这些通用数字化仪的“触发引擎”、触发源和触发逻辑。
框图左边显示的是数字化仪的硬件触发源,它们包括任意输入通道以及两个外部触发输入(Ext0或Ext1)之一。每个源都能够支持多种触发类型。因为许多数字化仪模块都有多用途I/O线,你可以用它们来报告数字化仪的运行/装载状态,它们可以提供触发输出信号以及其它功能。除了硬件触发源外,你还可以使用程序控制下的软件触发功能,这对开发自动化测试是很有用的。
数字化仪可能包含强大的触发与/或逻辑单元,可以帮助你将来自多个源的输入组合成一个复杂的多要素触发器。这样的触发器可以确保数字化仪只在专门定义的图案发生时才触发。另外一个功能是可以与其它数字化仪卡进行交叉触发。
触发模式
主要的触发源内置支持多种触发模式的双路触发电平比较器。这些触发源包括单边沿和双边沿触发器,重装载(滞后)触发器,窗口触发器,对于多源触发器来说,还有相关的触发选通信号发生器。
边沿触发器是最基本的触发器类型。你只需设置触发电平,并选择想要的触发沿。数字化仪会标记触发源的所选边沿越过触发阈值时的时间点。边沿选择可以是上升沿、下降沿或两个沿都触发。
重新装载或滞后触发器设置两个电平,第一个是装载电平,第二个触发电平。就跟边沿触发器一样,用户也要选择边沿类型。首先信号所选边沿必须越过装载电平,将触发器装载好。然后当信号的相同边沿再次越过触发电平时数字化仪再触发。重新装载触发模式可以用来防止数字化仪被噪声信号的错误边沿误触发。
窗口触发器使用每个触发源的两个触发阈值来定义幅度窗口。窗口触发器有两种工作模式:进入窗口触发和退出窗口触发。进入窗口触发是指只要源信号越过阈值电平之一并进入窗口时就触发。退出窗口触发是指源信号已经位于两个触发阈值之间、随后离开窗口时进行触发。当源信号可以在任意一个方向改变状态时就可以使用窗口触发器。
当使用带数字化仪内置触发逻辑的多源触发模式时,通常需要使用一个通道创建选通波形,用于支持来自另一个通道的触发。你可以使用高电平、低电平、窗口内或窗口外选择来实现这个目的。这些触发模式产生的内部选通信号可以与第二个触发源一起使用,并通过与逻辑选通触发器。
图3显示了使用高电平触发器选通另一个通道上的触发源的例子。只要CH0通道上的正弦波超过触发电平,就会为信号位于阈值上方的整段时间产生一个上升的选通信号。这个选通信号要与CH1通道上的信号进行与操作。由于选通信号只是当CH1上出现低幅度脉冲时才是上升的,因此,数字化仪将在脉冲波形越过触发电平时才触发,见图中的水平红色虚线。
图3:使用CH0上的高电平触发器创建一个选通信号,用于选择CH1通道上两个脉冲中较低幅度的脉冲。只要触发源位于触发电平上方(触发电平0),高电平触发器就会创建一个上升状态的选择信号。这个选通信号与CH1的脉冲波形相与,就可以使数字化仪在遇到较低幅度脉冲时进行触发。
对于采集信号并进行数字化处理的任何仪器来说,触发都是一个很重要的功能。如果不能根据特定波形特征进行触发,你可能永远看不到数字化波形中的感兴趣点。数字化仪可以用多种模式采集数据。环形缓冲器或正常模式工作时就像数字示波器一样。采集的数据被加载进环形缓冲器。当触发发生时,允许后置触发器延时的数据被锁定用于显示和处理。数字化仪还支持流采集模式,在这种模式下数字化仪采集、数字化并连续存储波形。因此触发器并不指示波形的起始位置,而是特定特征发生的时间点。不管是哪种模式,你都可以看到感兴趣事件之前和之后发生的事情。
最常见的触发方法是使用数字化仪某个通道的输入信号。基本原理是,检测到波形上一个定义好的点,将这个“触发事件”标记为采集数据上的一个已知位置。图1提供了一个基本的边沿触发例子。信号源是输入通道,触发事件发生在波形上升沿越过500mV触发电平之时。当触发事件发生时,所采信号上的位置被标记为时间轴上的零时间点,如图中的光标位置所示。如果信号是重复的,数字化仪将在每次采集新数据时在相同点进行触发,从而实现稳定的显示。
图1:基本的边沿触发,它定义了时间轴上的零时间点(用垂直虚线标记),触发事件发生在波形上升沿越过触发电平(水平虚线)之时。
信号波形、电平和时序的宽范围变化要求数字化仪的触发电路非常灵活。图2显示了Spectrum M4i系列数字化仪的触发“引擎”框图。它提供了现代数字化仪支持的宽范围触发条件例子。
图2:Spectrum M4i数字化仪框图展示了这些通用数字化仪的“触发引擎”、触发源和触发逻辑。
框图左边显示的是数字化仪的硬件触发源,它们包括任意输入通道以及两个外部触发输入(Ext0或Ext1)之一。每个源都能够支持多种触发类型。因为许多数字化仪模块都有多用途I/O线,你可以用它们来报告数字化仪的运行/装载状态,它们可以提供触发输出信号以及其它功能。除了硬件触发源外,你还可以使用程序控制下的软件触发功能,这对开发自动化测试是很有用的。
数字化仪可能包含强大的触发与/或逻辑单元,可以帮助你将来自多个源的输入组合成一个复杂的多要素触发器。这样的触发器可以确保数字化仪只在专门定义的图案发生时才触发。另外一个功能是可以与其它数字化仪卡进行交叉触发。
触发模式
主要的触发源内置支持多种触发模式的双路触发电平比较器。这些触发源包括单边沿和双边沿触发器,重装载(滞后)触发器,窗口触发器,对于多源触发器来说,还有相关的触发选通信号发生器。
边沿触发器是最基本的触发器类型。你只需设置触发电平,并选择想要的触发沿。数字化仪会标记触发源的所选边沿越过触发阈值时的时间点。边沿选择可以是上升沿、下降沿或两个沿都触发。
重新装载或滞后触发器设置两个电平,第一个是装载电平,第二个触发电平。就跟边沿触发器一样,用户也要选择边沿类型。首先信号所选边沿必须越过装载电平,将触发器装载好。然后当信号的相同边沿再次越过触发电平时数字化仪再触发。重新装载触发模式可以用来防止数字化仪被噪声信号的错误边沿误触发。
窗口触发器使用每个触发源的两个触发阈值来定义幅度窗口。窗口触发器有两种工作模式:进入窗口触发和退出窗口触发。进入窗口触发是指只要源信号越过阈值电平之一并进入窗口时就触发。退出窗口触发是指源信号已经位于两个触发阈值之间、随后离开窗口时进行触发。当源信号可以在任意一个方向改变状态时就可以使用窗口触发器。
当使用带数字化仪内置触发逻辑的多源触发模式时,通常需要使用一个通道创建选通波形,用于支持来自另一个通道的触发。你可以使用高电平、低电平、窗口内或窗口外选择来实现这个目的。这些触发模式产生的内部选通信号可以与第二个触发源一起使用,并通过与逻辑选通触发器。
图3显示了使用高电平触发器选通另一个通道上的触发源的例子。只要CH0通道上的正弦波超过触发电平,就会为信号位于阈值上方的整段时间产生一个上升的选通信号。这个选通信号要与CH1通道上的信号进行与操作。由于选通信号只是当CH1上出现低幅度脉冲时才是上升的,因此,数字化仪将在脉冲波形越过触发电平时才触发,见图中的水平红色虚线。
图3:使用CH0上的高电平触发器创建一个选通信号,用于选择CH1通道上两个脉冲中较低幅度的脉冲。只要触发源位于触发电平上方(触发电平0),高电平触发器就会创建一个上升状态的选择信号。这个选通信号与CH1的脉冲波形相与,就可以使数字化仪在遇到较低幅度脉冲时进行触发。
示波器 电路 自动化 比较器 信号发生器 传感器 射频 ARM 相关文章:
- 用数字荧光示波器对开关电源功率损耗进行精确分析(11-04)
- 数字荧光示波器结构融合模拟示波器和数字示波器的优势(03-03)
- 秘密武器助你从容应对噪声检测难题(03-29)
- 使用采样示波器对PCB进行串扰分析(11-06)
- 具有可调触发灵敏度的示波器可有效提高电路检测质量(01-11)
- 在手持式示波表上捕捉间歇性信号(01-25)