微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 利用电子传感器测量测试的方法

利用电子传感器测量测试的方法

时间:06-22 来源:互联网 点击:



5. IC传感器

处于正向偏压的硅二极管和基极一射极结点往往可用来测量温度,在室温下,正向偏压的结点大的降压0.7V,它是有大的-2mV/℃的负温度系数。确定的电压和温度系数是和结点的几何尺寸、电流密度和其它因素有关,精确的校准需要在已知温度下单独测量每个二极管或者晶体管,PN结的基本方程是I=IO(eqv/KT-1)其中q是电子的电量,K是物理常数,称为玻尔茨曼常数,T是绝对温度开氏温度是常数,基本上等于反向偏压的泄漏电流,在室温下,KT/q大约是26mV,在正常的正向偏压条件下,-1这项是微小和无关重要的,可以忽略不计,所以I=IOeqv/KT,于是I=I/Io=V,温度传感器IC的工作原理是根据两个基极--射极电压之间的差值,这时结点的电流保持固定的比率I2/I21,对这方程进行一点代数运算就可以得出电压差 ,中的电路利用这个电压差值产生的输出电压或电流是和温度成正比的,表3列举4个IC,AD590和AD592的表现相同,不过较新的AD592便宜,采用TO-92的封装外壳,适用于教室的温度范围,超出这范围,准确度较严格。National的LM34/LM35是三端器件,在0°F或0℃下输出为零,LM135/235/335却是类似于齐纳二极管的器件,其输出和绝对温度成正比。我们来去看看AD592/590、AD592和AD590是输出为1μA/K,在0°C时是272.5μA的两端点稳压器。制造商在5代时把这校准,保证它在4代至3代之间的工作,不过要注意,提高电压会增加功耗,并且引起轻微的测量误差,图5说明它们是简单线路中的用途,可以得出从0℃或者0°F的数字计伏特的温度读数。

1μA/K的电流流过R1时,R1以1mV/0°C,1.000K或者1mV/0°F,1.8000K的灵敏度把电流值分为电压值,R1的两端电压是和绝地温度成正比,电阻R2、R3和R4提供的补偿等于R1和0℃或者0°F时的电压,这补偿是利用数字伏特计来调节的,要获得摄氏表的读数,必须把R3调到输出是273.2mV,华氏表的读数则应把输出调到459.7mV,如R1原来就是±0.01%,或者利用数字欧姆表进行微调,要达到IC规定的准确度并不需温度校准,如果想使用较低级的IC要轻松达到贝高的准确度。



可以把R1换成可调节的电阻。让这IC处于已知温度下,把数字伏特计跨越在R1上。而且调节R1到lmV/度的正确读数,建议把IC放人封闭的护套中,而且把它放人均匀搅体的冰和水中,并达到平衡,微调R1,使它两端电压在0℃时为273.2mV,或者在320F的为491.4mV为止,依照上述办法调节R3,AD593有儿级别的型号,从25℃时的±5℃, AD590J到±5℃,AD590M,AD592获得保证的25℃,准确度是从±2.5℃,AD592AN至±0.5℃,AD59ICN,AD590的封装有T0-52,晶体管外壳或者扁平封装,而AD592在出装时采用T0-92型封装,National的LM34/35系列是更容易使用,这种三端IC输出10mV/0F,LM34或者10mV/℃。要读出温度只需一个数字伏特计和一个电池或者电压源,从4V到30V之间的任何电压,图6把一个LM34或者LM35和一个高电压/频率变换器LM351结合起来而产生和温度成正比的频率,图示的元件数值产生的精度100的输出,在100°F或100℃的输出是10kHz,要把它校准,可以暂时拆下这个传感器,提供精确的1000V输入,并且调节R3全输出为10.00V,不需调零,如果要改进容限较松的IC的准确度,可以把IC放在接近等量高端的已知准确度温度,并且调节R3的在获得正确的输出。LM34/35需要是负偏压去追踪零度以下的温度,图7说明其基本原理,这IC由止电源线供电,不过原把人约50μA的偏流加在输出上。LM35适用的温度范围有-55至150℃,-40至110℃是LM35C,以及0至100℃的LM35D,而25℃时保证准确度是±1℃和±0.5℃是LM35A,LM135的华氏型号也有类似的级数。其封装有T0-46金属型和T0-92塑料型,表3中最后一行IC是National的LM135/235/335的系列。




LM135的操作是一个类似于齐纳二极管两端点稳压器IC,类似于LM185的标准,它有第三个接线端供用户接上电,以便标准,偏流或者齐纳电流可以在400μA至50mA之间的任何数值,它的输出是l0mV/K。在0℃时是273V,和绝对温度成正比,不需用户校准的最严格25℃保证准确度是±1℃(LM135A和LM235A),而最松的是±6℃。LM335,LM135的额定温度范围是-55℃至150℃的连续范围内,LM235是-40至100℃,其封装有T0-46型金属和T0-92塑料型。



6. 热敏电阻

负温度系数的热敏电阻最适合测量温度,它是窄量程,高灵敏度和非线性的器件,它在25℃的电阻可从100Ω以下至1MΩ以上。它一般的灵敏度是-3%至-5%/℃。因此,其电阻的变化可以从每度几十欧姆到几万欧姆。制造负温度系数的热敏电阻要金属氧化物粉未,通常是氧化镍和氧化锰,有时还要加入其它东西混合制成。这些粉未以水与胶合剂制成为泥浆状,再压成需要的形状,圆片和圆柱型状等,然后干透,接着把干透的热敏电阻以1000℃以上的温度燃烧而形成耐火的类似陶瓷的结构。图8是常见的一些热敏电阻,测量温度最常用的是涂上环氧树脂的碟形热敏电阻,通常直径是在0.1寸以下,在较高温度下则使用类似大小而封上玻璃的碟形热敏电阻,有或没有封上玻璃的珠形热敏电阻具有较小的尺寸和快速反应。其尺寸从大约0.005寸到0.0005寸,在较大尺寸方面,在直径达1寸的柱形状,碟状和圆环状的热敏电阻有些制造商还生产热敏电阻传感器组件,包括从直条式指针至可以固定在晶体管外壳以及表面安装的组件。热敏电阻一向都是不太准确或者不稳定的,这是最便宜的器件的情况,在25℃时的一般电阻容限是在5%至20%之间,相当于准确度在1至5℃之间,在高温和低温之时,这容限会宽松一些。至少有三永公司YSZ,Fenwal和Thermomet-rics提供可更换的精确碟式热敏电阻涂上环氧树脂,适用的温度范围是从-80℃至150℃,在高低温两端的容限是大约1℃,它达到精确和稳定的办法是,在温度受到严格控制的热处理柜里把碟式电阻研磨到精确数值,以及通过老化测试和单独测试。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top