SUSAN边缘检测算法性能分析与比较
时间:07-20
来源:互联网
点击:
4.3算法使用灵活
使用控制参数t和g,可以根据具体情况很容易地对不同对比度、不同形状的图像通过设置恰当的t和g进行控制。比如图像的对比度较大,则可选取较大的t值,而图像的对比度较小,则可选取较小的t值。所以这种算法非常适用于对某些低对比度图像或目标的识别。
4.4运算量小,速度快
对1幅256×256的图像,应用SUSAN算法进行计算,对每一点只需做8次加法运算,共需要做256×256×8次加法。
而对于其他的经典的边缘检测算法,如果采用欧式距离作为梯度算子,Sobel算子采用两个3×3的模板,对每一点需要做9次加法,6次乘法,以及1次开方运算,则共需要做256×256×9次加法运算和256×256×6次乘法运算,以及256×256次开方运算。对Gauss-Laplace算子、Priwitt算子以及Canny算子计算量就更大。
4.5 可以检测边缘的方向信息
SUSAN算法实际上还可以检测边缘的方向信息。具体算法是,对每一个检测点计算模板内与该点灰度相似的象素集合的重心,检测点与该重心的连线的矢量垂直与这条边缘[5]。
5 结 语
SUSAN边缘检测算法直接利用图像灰度相似性的比较,而不需计算梯度,具有算法简单、定位准确、抗噪声能力强等特点。因此,非常适于含噪图像或低对比度灰度图像的边缘检测。如果进一步减小门限g的数值,SUSAN算法还可以用于角点的检测[1]。
使用控制参数t和g,可以根据具体情况很容易地对不同对比度、不同形状的图像通过设置恰当的t和g进行控制。比如图像的对比度较大,则可选取较大的t值,而图像的对比度较小,则可选取较小的t值。所以这种算法非常适用于对某些低对比度图像或目标的识别。
4.4运算量小,速度快
对1幅256×256的图像,应用SUSAN算法进行计算,对每一点只需做8次加法运算,共需要做256×256×8次加法。
而对于其他的经典的边缘检测算法,如果采用欧式距离作为梯度算子,Sobel算子采用两个3×3的模板,对每一点需要做9次加法,6次乘法,以及1次开方运算,则共需要做256×256×9次加法运算和256×256×6次乘法运算,以及256×256次开方运算。对Gauss-Laplace算子、Priwitt算子以及Canny算子计算量就更大。
4.5 可以检测边缘的方向信息
SUSAN算法实际上还可以检测边缘的方向信息。具体算法是,对每一个检测点计算模板内与该点灰度相似的象素集合的重心,检测点与该重心的连线的矢量垂直与这条边缘[5]。
5 结 语
SUSAN边缘检测算法直接利用图像灰度相似性的比较,而不需计算梯度,具有算法简单、定位准确、抗噪声能力强等特点。因此,非常适于含噪图像或低对比度灰度图像的边缘检测。如果进一步减小门限g的数值,SUSAN算法还可以用于角点的检测[1]。
- 频宽、取样速率及奈奎斯特定理(09-14)
- 为什么要进行信号调理?(09-30)
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 为任意波形发生器增加价值(10-27)
- 基于PCI 总线的高速数据采集系统(09-30)
- 泰克全新VM6000视频测试仪助力数字电视等产品测试 (10-06)