微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 高性能SERDES及其在CPRI接口的应用分析

高性能SERDES及其在CPRI接口的应用分析

时间:01-21 来源:Steven Shi, Texas Instruments 点击:

些控制字符传送某些控制协议。因此,在8B/10编码中,包含下面两种信息:

1)D分组,用于传递有效业务数据;

2)K分组,用于传递控制信息等,如K28.5控制字符10B编码包含0011111010或1100000101(连续5个’1’或’0’,称为Comma,千兆以太网使用的8B/10B编码方案中Comma是唯一的),用于定位串行数据流中每10个bits组的边界,避免数据流出现错误时无法界定每10bit的边界,导致链路中断。

TLK3132内部兼容了IEEE802.3-2005中关于1000BASE-X物理编码子层(PCS)技术(注:不支持自协商功能),如CTC FIFO、8B/10B编解码电路等模块,同时这些模块设计时非常灵活,通过MDIO口进行寄存器设置可以使能或关闭。此外,TLK3132通过检测Comma进行通道同步判断,内部的状态机也是参考1000BASE-X规定的链路同步和链路失步建立机制,因此TLK3132能被广泛应用在WI、数据网络、以太网等不同领域。

2.4 时钟电路

SERDES实现的一个关键技术是时钟的产生和分布,图5是TLK3132芯片内部的时钟架构。时钟配置非常灵活,支持单端或差分参考时钟输入,同时包括多个高频锁相环电路:

1)高速SERDES Core包含了一个高频倍频器(用于产生高速串行数据)和一个基于相位内插的CDR(在接收端用于从串行数据中恢复时钟)。

2)由于串并模块里的高频倍频器环路带宽很大,最大可达30MHz左右。故TLK3132内部集成了一颗基于LC振荡器的抖动滤除锁相环,环路带宽通常设置在几百KHz以内,可以对输入参考时钟进行滤除,降低参考时钟对几百KHz 以上抖动性能的要求,图6是TLK3132发送链路在抖动滤除器打开和关闭下的环路传递函数。此外,抖动滤除器也可对链路恢复的时钟(只可接收CH0通道的恢复时钟RXBCLK(0))进行抖动滤除,提高恢复时钟的信号质量。

3)PLL1、PLL2、PLL3和PLL4作为倍频器,和前级抖动滤除锁相环电路配合,分别产生适合的时钟频率以满足系统各个模块的需求。

\

图5 内部时钟架构

\

图6 TLK3132内部锁相环环路带宽

2.5 PRBS测试

TLK3132支持PRBS码的产生和验证,便于系统定位链路故障,提高设备的可维护性。TLK3132内部有两套PRBS测试方法,一个在SERDES Core内部(通过寄存器0x9011/0x9012配置),该测试一般是只针对生产测试,且控制性能受限,在电路设计中一般不用该功能;另一个是SERDES Core外面(图1所示),支持\ PRBS测试多项式是\,可以通过寄存器配置(0x10)或外部引脚PRBSEN逻辑控制打开或关闭。此外,PRBS验证时可通过GPO[1:0]管脚监控PRBS测试误码情况,也可访问寄存器0x1D读取误码数(当读取该寄存器后,将从新开始误码计数)。

2.6 MDIO接口和寄存器访问

TLK3132内部寄存器访问通过MDIO管理接口实现(遵循IEEE 802.3 Clause 22规格),包括管理数据时钟(MDC)和管理数据输入输出(MDIO)。由于Clause 22直接寻址寄存器空间限制,TLK3132增加了一些扩展寄存器,故支持两种寻址方式:

1) 直接寻址:主要包括与物理层相关的链路配置,地址空间分布在0x00~0x1F,PA[0]的高低电平决定对TLK3132的CH0通道或CH1通道进行操作;

2) 间接寻址:TLK3132的一些扩展功能访问,如内部时钟配置、I/O性能配置等。地址空间分布在0x9000~0x9900,不同通道的功能有独立的寄存器进行配置。通过间接地址访问寄存器,需要先把寄存器地址写到0x1E地址,然后把相应的控制字写到0x1F地址或从0x1F地址读取相应的寄存器值。

3 TLK3132在CPRI接口的应用

为了处理射频模块拉远技术中基带单元和射频单元的光纤链接,国际上成立两个标准化组织:一个是CPRI (Common Public Radio Interface),在2003年由华为、爱立信、NEC、西门子和北电发起成立的组织,致力于基带、射频接口的标准化;另一个是OBSAI (Open Base Station Architecture Initiative),由诺基亚、LG电子、三星电子等成立的联盟。二者都定义了使基带和射频分离的标准化接口,也就是将宏基站分为基带单元BBU和远端射频单元RRU两部分,BBU和RRU之间传送I/Q数据和控制管理数据,其信号格式就是CPRI或者OBSAI所定义的标准接口。本文以CPRI接口为例,详解TLK3132在射频模块拉远技术中的应用。

3.1 CPRI接口

CPRI接口在传输用户界面定义了物理层layer1和数据链路层layer2两层协议。在物理层中,将上层接入点的数据进行串并/并串转换,以及物理层的编解码(CPRI接口推荐采用8B/10B,遵循IEEE 802.3 2005 Clause36建议);在数据链路层,对上层接入点的I/Q数据、物理层协议数据、网络协议数据(包括以太网数据、高层数据链路协议数据)和厂家自定

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top