运用RF测量技巧完整发挥RF设备性能
新款 RF 仪器均具备绝佳的精确度与测量功能,已大幅超越之前的产品,但若讯号无法达到一定质量,这些仪器亦无法发挥其效能;声音测量实作与相关要素,将可让使用者完全了解自己投资的 RF仪器。
进行稳定的 RF 测量作业
在理想状态下,应可轻松进行RF测量作业,但实际上却有着许多难题;目前既有的 RF 仪器即可满足主要的 RF 测量作业,如功率、频率与噪声,但"获得结果"不见得就是"获得正确的结果"。若能于 RF 测量作业中建构最佳实作范例,就能确保获得稳定、精确,且可重复使用的测量结果。
先了解术语
诸如"精确度"、"可重复性"、"分辨率",与"不确定性"的术语,均往往于 RF 应用中遭混用或误用,反而降低了测量的正确度。在进行 RF 测量作业之前,必须先了解重要术语,还有其正确的对应文字。
相较于模拟量表而言,当要于模拟量表上分辨正确读数时,仪器的数字显示方式绝对要简单许多。然而,若数字显示器呈现小数点后 3 位的数值,则使用者亦无法了解仪器或测量作业的分辨率与精确性。
即便可显示数千个 dB 的功率,或到小数单位的 Hertz 频率,亦不代表该款仪器就能测量数分钟之内的变化,所显示的位数应要能超过仪器的测量功能所及。为了完整了解 RF 仪器的功能,应随时参阅规格说明或数据,正确的术语定义,将可减少使用者对测量作业的疑虑。
接着列出常见的数个关键术语:
˙分辨率 (Resolution)──仪器所能确实侦测的最小变化量 ;
˙可重复性(Repeatability)──在相同条件与结果之下,可重复进行的测量次数;
˙不确定性(Uncertainty)──将测得的未知绝对值予以量化 ;
˙精确度(Accuracy)──仪器在已知误差范围内所能测得的参数实际/绝对值。
若能预估错误信息来源,往往就能决定测量作业的不确定性。除了上面提到的术语之外,亦可至 National Institute Standards and Technology (NIST) 或其它标准机构,找到相关规格说明文件。可追踪性 (Traceability) 则可确保所有测量仪器均是以常见标准所定义。
而"规格 (Specification) "则是由测试设备的保证效能,并可由 NIST 追踪相关校准认证。"典型、常见 (Typical) "意指已完全测试的效能,但并未纳入测量的不确定性。"名目、表列 (Nominal) "效能为辅助信息,而并非所有仪器都经过此项测量。
精确度为仪器在已知误差范围内所能测得的参数实际/绝对值,亦即所谓的 X plus 或 minus Y。若没有某些误差限制与单位,则测量值"34"并无任何意义。同样的,仅有"5"的误差规格亦无任何意义;但"5%"的误差规格亦无意义。
"5%"可代表"±5%",亦可为"+3%"或"-2%";举例来说,精确度的正确表示方式应为"34 V +/- 1 V"、"34 V +/- 1%",或"34 V +2/-1 V"。进一步了解 RF 测量术语,则可更熟悉其意义。若要能与别人精确沟通测量作业,则应先了解相关结果。
了解自己的受测装置
受测装置(Device under test,DUT) 可能大幅影响 RF 测量作业。举例来说,温度就可能影响稳定性与可重复性,许多 RF 装置与仪器并不会自行补偿温度变化,因此必须先稳定温度,才能将测量作业的漂移错误降至最低。还有立即的环境影响(如是否有空调循环、是否加盖与嵌板、处于室内或室外、是否靠近热源) 均应纳入变量考虑,并应注意暖机次数、DUT 冷却条件,与外围环境,与保持稳定的温度。
在主动式装置中,多余的功率可能造成装置发热;以高功率的放大器为例,DUT 本身可达稳定的温度,但后续的组件就不一定,衔接放大器输出的切换器与衰减器就常有升温现象。这时就可能要找出由放大器所产生的不定讯号,如谐波。
电源供应线可能产生环境噪声,并直接影响输出;而当放大器处于压缩状态时,若测量其线性参数 (增益与相位) 亦将无法得到相关结果。因为所有因素均将影响 RF 测量作业的精确度,在测量装置之前,先行了解 DUT、作业方式,与其对 RF 测量参数的影响,才能获得有意义的结果。
找出不确定性的范围
若要比对 RF 测试设备的规格与 DUT 的测量需求,亦略显不足;若 RF 测量作业的频率较高,而仪器又较不符合所需规格时,更加扩大不确定性的范围。接着各个测量步骤均可能发生错误,进而影响整体结果。当进行错误测量时,应先找出测量作业的可能错误,再找出可能影响的 DUT。
使用者应了解仪器的重要操作规格,还有各个测量步骤所牵连的装置 (包含 DUT 在内);而其它相关规格则应了解配对、功率、频率响应与噪声系数。亦应了解所有参数的容错范围,并记住如下的参数:
˙RF 切换的可重复性、老化程度,与功率承载;
˙耦合器的方向系数,连接线的相位稳定性,还有转接器的插入(Insert)损耗与折返损耗 (Return loss);
˙电路板线路的阻抗质量、适配卡插槽,与电路板的传输开关情形 ;
˙测量作业的电磁波干扰(EMI)强度。
- 基于矢量分析对RF进行有效测量(11-20)
- 扩展低功耗RF设备通信距离的设计(09-17)
- 电磁屏蔽功能稳定性分析(05-25)
- 通信车辆的电磁兼容(01-07)
- 强化线圈耦合效率 无线充电设备效能倍增(08-04)