多声源情境下的三维定位与分离系统的设计实现
时间:11-12
来源:互联网
点击:
项目背景及可行性分析
项目名称、项目的主要内容及目前的进展情况
项目主要内容:声音分离的研究在声音通信、声学目标检测等方面都有着重要的理论和实用价值;声源分离技术在机器听觉、安保监控、军事等领域具有特别的应用。目前,嘈杂背景下,单声源定位与增强,已有所应用;但多声源情景下的定位与分离,由于算法和硬件复杂,还很少走向应用。本项目通过构建麦克风阵列信号采集硬件,实现FPGA声音分离算法,以完成两个或两个以上声源的三维定位和分离,利用FPGA的并行性,以达到实时性的目标。项目难点在于,制作信号采集及处理板,筛选有效且易于实现的数字信号算法并实现。
二、项目实施方案
多声源定位与分离系统的硬件系统分为三部分:声音信号模拟前端、数据采集母板、数字信号处理核心,如图1所示。
图1 系统硬件框图
前端放大采用高频低噪放大器NE5532,模数转换器使用可以6通道64KHz同步采样的AD73360。为便于扩展和调试,数据采集板与信号处理板之间以USB连接,数据在3MByte以上。其中,缓存用于数据中间结果暂存,SD卡用于长期保存音频数据,人机交互设备包括按键、LCD等。
数字信号处理是本项目的核心,按功能模块划分,包括前端修正、相关性分析、坐标求解、声源分离等,如图2所示。
图2 系统功能模块框图
数据信号处理算法为本项目的重点和难点,需反复试验论证才能确定。
项目名称、项目的主要内容及目前的进展情况
项目主要内容:声音分离的研究在声音通信、声学目标检测等方面都有着重要的理论和实用价值;声源分离技术在机器听觉、安保监控、军事等领域具有特别的应用。目前,嘈杂背景下,单声源定位与增强,已有所应用;但多声源情景下的定位与分离,由于算法和硬件复杂,还很少走向应用。本项目通过构建麦克风阵列信号采集硬件,实现FPGA声音分离算法,以完成两个或两个以上声源的三维定位和分离,利用FPGA的并行性,以达到实时性的目标。项目难点在于,制作信号采集及处理板,筛选有效且易于实现的数字信号算法并实现。
二、项目实施方案
多声源定位与分离系统的硬件系统分为三部分:声音信号模拟前端、数据采集母板、数字信号处理核心,如图1所示。
图1 系统硬件框图
前端放大采用高频低噪放大器NE5532,模数转换器使用可以6通道64KHz同步采样的AD73360。为便于扩展和调试,数据采集板与信号处理板之间以USB连接,数据在3MByte以上。其中,缓存用于数据中间结果暂存,SD卡用于长期保存音频数据,人机交互设备包括按键、LCD等。
数字信号处理是本项目的核心,按功能模块划分,包括前端修正、相关性分析、坐标求解、声源分离等,如图2所示。
图2 系统功能模块框图
数据信号处理算法为本项目的重点和难点,需反复试验论证才能确定。
- 电源管理总线的结构与优势(11-19)
- 新型灌封式6A至12A DC-DC μModule稳压器系列(11-19)
- 低电压PLD/FPGA的供电设计(01-24)
- 基于FPGA的高精度数字电源(02-12)
- 功率分配系统(PDS)设计:利用旁路电容/去耦电容(04-29)
- 具有多个电压轨的FPGA和DSP电源设计实例(05-22)