微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 新一代宽带宽功率放大器设计

新一代宽带宽功率放大器设计

时间:10-20 来源:互联网 点击:

混合式放大器的测量值


我们在一块用Rogers 4350B制成的电路板上对最终器件进行了测试。50Ω匹配输入表现良好,能在40MHz至2.7GHz的范围内实现10dB的回波损耗,在低至30MHz的频率范围内实现7dB的回波损耗(图5)。器件在低频下实现12dB的增益,在高频下实现17dB的增益。

在32V和脉冲条件下,放大器实现了5W的典型输出功率(或者,4W/mm的功率密度),在1至2.7GHz范围内实现45%的功率附加效率(图6)。我们选择了脉冲而非CW工作模式,因为评估板限制了总功耗。另外,我们在1至2.7GHz范围内对数据进行了测量,因为我们无法在1GHz以下构建脉冲试验台。

讨论

结果表明,两款放大器均能在30~2700 MHz范围内工作,二者具有相似的输出功率密度。完全匹配的MMIC在器件尺寸以及输出功率的选择方面表现出较大的灵活性,但其代价也比较大。另一方面,我们展示的混合式解决方案具有较为独特,器件尺寸固定,因此对性能形成了限制;较小或大得多的晶体管都无法在整个带宽范围内取得良好效果。但是,由于芯片尺寸非常小(为MMIC的1/4,但功率仅少一半),因此其代价更能令人接受。另外,最多可以使用两倍周长的晶体管,可实现类似MMIC的性能,芯片尺寸增幅也不大(23%),并且混合式解决方案可使用外部元件进行调整,以在特定频段范围内实现更加优化的性能。然而,MMIC解决方案由于要处理的寄生电容较少,所以可以实现卓越的性能。归根结底,如果系统侧重于打造一种低成本的解决方案,并且可以牺牲一定的性能,则混合式解决方案是更合适的选择。然而,如果系统要求以较高的代价提供特定的性能,则MMIC解决方案是更好的选择。尽管如此,实践表明,两种设计技术都是宽带条件下的有效选择。


图5:混合MMIC分立式功率放大器的小信号S参数实测值。


图6:混合式解决方案的实测Pout和漏极效率。放大器驱动至3dB压缩点,所用脉冲宽度为100us,占空比为20%。

结论

本文介绍了两种不同的放大器平台,即全集成式MMIC和混合封装式放大器,两者均可在30 ~2700MHz范围内实现领先的性能。其实现方法是在MMIC上运用行波技术,在混合式设计中,则是运用桥接T拓扑结构使晶体管匹配至50Ω。两种技术各有优点,在性能和成本方面各有折衷。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top