交错ADC揭秘
时间:09-22
来源:互联网
点击:
乒乓(双路)交错
当我们只是交错两个通道以便使采样速率翻倍时,我们将其称为"乒乓",如图2 (a)中的框图所示。这是一种最简单的情况,它有一些有趣和有用的特性。这种情况下,在交错ADC的第一奈奎斯特频段内,交错杂散位于直流、fs/2和fs/2 – fIN处。因此,如果输入信号VIN是一个对中至fIN的窄带信号——如图2 (b)中的第一奈奎斯特输出频谱所示——交错杂散包含直流处的失调杂散、fs/2处的另一个失调失配杂散以及对中至fs/2 – fIN的增益和时序杂散镜像,看上去就像输入自身的一个放大复制版本。
如果输入信号VIN (f)完全位于0和fs/4之间——如图2 (b)所示——那么交错杂散不与数字化输入频率重叠。此时,坏消息是我们只能数字化半个奈奎斯特频段,就好比只有一个时钟为fs/2的单通道,虽然我们依旧消耗至少两倍于该单个通道的功耗。奈奎斯特频段上限的交错杂散镜像可在数字化之后通过数字滤波手段抑制,无需进行模拟损害校正。
但好消息是由于乒乓ADC时钟为fs,数字化输出得益于动态范围内的3 dB处理增益。此外,与使用时钟为fs/2的单个ADC相比,乒乓ADC放宽了抗混叠滤波器设计要求。
图2. (a)乒乓方案(b)窄带输入信号位于fs/4以下时的输出频谱(c)此时输入信号位于fs/4和奈奎斯特频率fs/2之间。
如果窄带信号位于第一奈奎斯特频段的上半部,则所有考虑因素都适用,如图2 (c)所示,因为交错镜像杂散移至奈奎斯特频段的下半部分。再次强调,增益和时序杂散可在滤波数字化之后通过数字手段抑制。
最后,输入信号和交错杂散的频率将会重叠,并且一旦输入信号频率位置跨过fs/4线,交错镜像就会破坏输入频谱。这种情况下,恢复所需输入信号将是不可能的,而乒乓方案不可用。当然,除非通道间匹配足够紧密,使得交错杂散成分对于应用来说达到可以接受的低程度,或者引入校准来降低导致IL镜像的原因。
总之,频率规划和某些数字滤波可以恢复乒乓方案中的窄带数字化输入,哪怕存在通道失配。虽然转换器功耗相比使用单个时钟为fs/2的ADC时基本翻了个倍,但乒乓方案提供了3 dB处理增益,同时放宽了抗混叠要求。
采用乒乓方案并且无任何通道失配校正的一个示例,以及其产生的交错杂散见图3。在该例中,两个双通道14位/1 GSPS ADC AD9680以交替乘以正弦波的速率进行采样,从而返回单个组合输出数据流,速率为2 GSPS。当我们查看该乒乓方案输出频谱的第一奈奎斯特频段时(位于直流和1 GHz之间),可以看到输入音,它是fIN = 400 MHz时位于左侧的强音;我们还能看到在fs/2 – fIN = 2G/2 – 400 M = 600 MHz处有较强的增益/时序失配杂散。由于通道本身的失真以及其它损害,我们还能看到一系列其它信号音,但都低于–90 dB线。
图3. 乒乓方案的2 GSPS输出数据组合频谱,采用两个AD9680在1 GSPS时钟下获取,采样相移为180°。
更高次交错
当具有两个以上通道时,上文所说的频率规划就不那么实用了。我们无法将交错杂散的位置限定在奈奎斯特频段的某一小部分。比如考虑四路交错ADC的情况,如图4 (a)所示。此时,失调失配会提高直流、fs/4和fs/2时的信号音,而增益和时序交错镜像位于fs/4 – fIN、fs/4 + fIN和fs/2 – fIN。交错ADC输出频谱的一个示例请参见图4 (b)。很明显,除非输入位于fs/8以内的带宽之内,否则无论fIN的位置如何,输入都会与部分交错杂散重叠,并且如果输入是一个极端窄带信号,那么我们不应当尝试使用宽带交错ADC将其数字化。
在这种情况下,我们需要最大程度降低IL杂散功率,以便获得完整的奈奎斯特频谱和更干净的频谱。为了达到这个目的,我们使用校准技术来补偿通道间失配。校正失配的影响后,最终的IL杂散功率会下降。SFDR和SNR都会得益于该杂散功率的下降。
补偿方法受限于失配可测量并最终校正的精度。除了校准所能达到的水平外,为了进一步抑制残留杂散,还可间歇性随机打乱通道输入采样的顺序。这样做之后,前面讨论的由于未校准失配而产生的转换输入信号调制效果将从固定码噪声转换为伪随机噪声。因此,IL音和干扰周期码转换为伪随机噪声类成分,并叠加至转换器量化噪底而消失,或者至少将干扰杂散镜像和信号音加以扩散。此时,与IL杂散成分有关的功率叠加至噪底功率。因此,虽然改善了失真,但SNR可能下降,下降量为IL杂散功率加上噪声。SNDR (SINAD)基本上没有变化,因为它由失真、噪声和随机化组成;它只是将IL贡献因素从一个成分(失真)转移到另一个成分(噪声)。
图4. (a)四路交错ADC (b)对应显示交错杂散的第一奈奎斯特输出频谱
让我们来看几个交错ADC的示例。AD9625是一个12位/2.5 GSPS三路交错ADC。对三个通道之间的失配进行校准,以便最大程度减少交错杂散。图5 (a)所示是一个输入接近1 GHz的输出频谱示例。在该频谱中,除了约为1 GHz的输入音外,还可以看到通道在500 MHz附近存在2次和3次谐波失真,并在基频处存在4次谐波失真。交错失配校准可大幅降低交错杂散的功耗,并且在整个频谱中可以看到大量的额外残留的较小杂散音。
为了进一步减少这些残留杂散成分,引入了通道随机化。加入了第四个校准通道,然后将四个通道变为三路交错,并通过间歇性将交错通道与第四个更换,实现随机改变顺序。这就好比人们可以像耍杂技那样将三根柱子投向空中,然后每一次都更换第四根。这样做之后,可使残留交错杂散功率随机化,然后扩散到噪底。如图5 (b)所示,经过通道随机化之后,交错杂散几乎消失了,而噪声功率却只略为增加,因而SNR降低2 dB。当然,需要注意的是,虽然图5 (b)中的第二个频谱比失真音远为干净,但随机无法影响2次、3次和4次谐波,因为这些谐波不是交错杂散。
(a)
(b)
图5. AD9625的输出频谱,时钟为2.5 GSPS,输入音接近1 GHz。(a)顺序三路交错;SNR = 60 dBFS,SFDR = 72 dBc,受限于3次谐波,接近500 MHz;然而,整个频谱中可见大量交错杂散。(b)三路交错,随机通道置乱;SNR = 58 dBFS,而SFDR = 72 dBc依然由3次谐波决定,通过将功率扩散到噪底而消除了所有交错杂散。
使用通道随机化的另一个交错ADC示例如图6中的频谱所示。此时采用四路交错16位/310 MSPS ADC AD9652。图6示例中,四个通道以固定顺序交错,并且不进行任何减少通道失配的校准。频谱清楚表明交错杂散位于预计频率位置,且它们的大功率远高于2次和3次谐波,并将无杂散动态范围限制为仅有57 dBc。
然而,如果同样的ADC经过前景校准以便减少通道失配,那么交错杂散功率将会大幅下降,如图7所示。与上例中的情况类似,通道谐波失真不受影响,但通过通道失配校准大幅降低了交错杂散功率。
最后,图7中的频谱纯度可得到进一步改善,方法是使通道顺序随机化,如图8所示。此时,随机化使用专利技术,对四个通道的顺序进行间歇性加扰无需通过另一个(第五个)通道来达成,从而省下了与此相关的功耗。如图8所示,经过随机化之后,结果频谱中仅有常规谐波失真。
图6. AD9652的输出频谱,时钟为 fs=310 MHz,采用fIN ~70 MHz的正弦输入。此时,未施加通道校准和随机化。2次(HD2)和混叠3次(HD3)谐波分别在大约140 MHz和100 MHz处可见。交错(IL)杂散同样可见。这些是直流、fs/2(图中的OS2)以及fs/4(图中的OS4)处的失调音。另外,增益(时序)杂散可见于fs /2-fIN(图中的GS2)、fs /4+fIN(图中的GS4+)以及fs /4- fIN(图中的GS4-)。此图中的SNR查询人为变差了,因为部分杂散成分和噪声功率混在了一起。
图7. 同一个AD9652的输出频谱,采用同样的输入,但经过校准后四个通道减少了失配。与图6相比,虽然2次和3次谐波未受影响,但交错杂散的功率大幅下降,并且SFDR改善了30 dB,即从57 dBc到87 dBc。
图8. 上例开启交错顺序随机化之后的输出频谱。随机化残留交错杂散可将它们的功率扩散到噪底中,相应的尖峰便消失了。可以看到的仅有常规谐波失真。SNR几乎未受影响,因为来自交错音并扩散的杂散功率经过失配校准后可以忽略。
当我们只是交错两个通道以便使采样速率翻倍时,我们将其称为"乒乓",如图2 (a)中的框图所示。这是一种最简单的情况,它有一些有趣和有用的特性。这种情况下,在交错ADC的第一奈奎斯特频段内,交错杂散位于直流、fs/2和fs/2 – fIN处。因此,如果输入信号VIN是一个对中至fIN的窄带信号——如图2 (b)中的第一奈奎斯特输出频谱所示——交错杂散包含直流处的失调杂散、fs/2处的另一个失调失配杂散以及对中至fs/2 – fIN的增益和时序杂散镜像,看上去就像输入自身的一个放大复制版本。
如果输入信号VIN (f)完全位于0和fs/4之间——如图2 (b)所示——那么交错杂散不与数字化输入频率重叠。此时,坏消息是我们只能数字化半个奈奎斯特频段,就好比只有一个时钟为fs/2的单通道,虽然我们依旧消耗至少两倍于该单个通道的功耗。奈奎斯特频段上限的交错杂散镜像可在数字化之后通过数字滤波手段抑制,无需进行模拟损害校正。
但好消息是由于乒乓ADC时钟为fs,数字化输出得益于动态范围内的3 dB处理增益。此外,与使用时钟为fs/2的单个ADC相比,乒乓ADC放宽了抗混叠滤波器设计要求。
图2. (a)乒乓方案(b)窄带输入信号位于fs/4以下时的输出频谱(c)此时输入信号位于fs/4和奈奎斯特频率fs/2之间。
如果窄带信号位于第一奈奎斯特频段的上半部,则所有考虑因素都适用,如图2 (c)所示,因为交错镜像杂散移至奈奎斯特频段的下半部分。再次强调,增益和时序杂散可在滤波数字化之后通过数字手段抑制。
最后,输入信号和交错杂散的频率将会重叠,并且一旦输入信号频率位置跨过fs/4线,交错镜像就会破坏输入频谱。这种情况下,恢复所需输入信号将是不可能的,而乒乓方案不可用。当然,除非通道间匹配足够紧密,使得交错杂散成分对于应用来说达到可以接受的低程度,或者引入校准来降低导致IL镜像的原因。
总之,频率规划和某些数字滤波可以恢复乒乓方案中的窄带数字化输入,哪怕存在通道失配。虽然转换器功耗相比使用单个时钟为fs/2的ADC时基本翻了个倍,但乒乓方案提供了3 dB处理增益,同时放宽了抗混叠要求。
采用乒乓方案并且无任何通道失配校正的一个示例,以及其产生的交错杂散见图3。在该例中,两个双通道14位/1 GSPS ADC AD9680以交替乘以正弦波的速率进行采样,从而返回单个组合输出数据流,速率为2 GSPS。当我们查看该乒乓方案输出频谱的第一奈奎斯特频段时(位于直流和1 GHz之间),可以看到输入音,它是fIN = 400 MHz时位于左侧的强音;我们还能看到在fs/2 – fIN = 2G/2 – 400 M = 600 MHz处有较强的增益/时序失配杂散。由于通道本身的失真以及其它损害,我们还能看到一系列其它信号音,但都低于–90 dB线。
图3. 乒乓方案的2 GSPS输出数据组合频谱,采用两个AD9680在1 GSPS时钟下获取,采样相移为180°。
更高次交错
当具有两个以上通道时,上文所说的频率规划就不那么实用了。我们无法将交错杂散的位置限定在奈奎斯特频段的某一小部分。比如考虑四路交错ADC的情况,如图4 (a)所示。此时,失调失配会提高直流、fs/4和fs/2时的信号音,而增益和时序交错镜像位于fs/4 – fIN、fs/4 + fIN和fs/2 – fIN。交错ADC输出频谱的一个示例请参见图4 (b)。很明显,除非输入位于fs/8以内的带宽之内,否则无论fIN的位置如何,输入都会与部分交错杂散重叠,并且如果输入是一个极端窄带信号,那么我们不应当尝试使用宽带交错ADC将其数字化。
在这种情况下,我们需要最大程度降低IL杂散功率,以便获得完整的奈奎斯特频谱和更干净的频谱。为了达到这个目的,我们使用校准技术来补偿通道间失配。校正失配的影响后,最终的IL杂散功率会下降。SFDR和SNR都会得益于该杂散功率的下降。
补偿方法受限于失配可测量并最终校正的精度。除了校准所能达到的水平外,为了进一步抑制残留杂散,还可间歇性随机打乱通道输入采样的顺序。这样做之后,前面讨论的由于未校准失配而产生的转换输入信号调制效果将从固定码噪声转换为伪随机噪声。因此,IL音和干扰周期码转换为伪随机噪声类成分,并叠加至转换器量化噪底而消失,或者至少将干扰杂散镜像和信号音加以扩散。此时,与IL杂散成分有关的功率叠加至噪底功率。因此,虽然改善了失真,但SNR可能下降,下降量为IL杂散功率加上噪声。SNDR (SINAD)基本上没有变化,因为它由失真、噪声和随机化组成;它只是将IL贡献因素从一个成分(失真)转移到另一个成分(噪声)。
图4. (a)四路交错ADC (b)对应显示交错杂散的第一奈奎斯特输出频谱
让我们来看几个交错ADC的示例。AD9625是一个12位/2.5 GSPS三路交错ADC。对三个通道之间的失配进行校准,以便最大程度减少交错杂散。图5 (a)所示是一个输入接近1 GHz的输出频谱示例。在该频谱中,除了约为1 GHz的输入音外,还可以看到通道在500 MHz附近存在2次和3次谐波失真,并在基频处存在4次谐波失真。交错失配校准可大幅降低交错杂散的功耗,并且在整个频谱中可以看到大量的额外残留的较小杂散音。
为了进一步减少这些残留杂散成分,引入了通道随机化。加入了第四个校准通道,然后将四个通道变为三路交错,并通过间歇性将交错通道与第四个更换,实现随机改变顺序。这就好比人们可以像耍杂技那样将三根柱子投向空中,然后每一次都更换第四根。这样做之后,可使残留交错杂散功率随机化,然后扩散到噪底。如图5 (b)所示,经过通道随机化之后,交错杂散几乎消失了,而噪声功率却只略为增加,因而SNR降低2 dB。当然,需要注意的是,虽然图5 (b)中的第二个频谱比失真音远为干净,但随机无法影响2次、3次和4次谐波,因为这些谐波不是交错杂散。
(a)
(b)
图5. AD9625的输出频谱,时钟为2.5 GSPS,输入音接近1 GHz。(a)顺序三路交错;SNR = 60 dBFS,SFDR = 72 dBc,受限于3次谐波,接近500 MHz;然而,整个频谱中可见大量交错杂散。(b)三路交错,随机通道置乱;SNR = 58 dBFS,而SFDR = 72 dBc依然由3次谐波决定,通过将功率扩散到噪底而消除了所有交错杂散。
使用通道随机化的另一个交错ADC示例如图6中的频谱所示。此时采用四路交错16位/310 MSPS ADC AD9652。图6示例中,四个通道以固定顺序交错,并且不进行任何减少通道失配的校准。频谱清楚表明交错杂散位于预计频率位置,且它们的大功率远高于2次和3次谐波,并将无杂散动态范围限制为仅有57 dBc。
然而,如果同样的ADC经过前景校准以便减少通道失配,那么交错杂散功率将会大幅下降,如图7所示。与上例中的情况类似,通道谐波失真不受影响,但通过通道失配校准大幅降低了交错杂散功率。
最后,图7中的频谱纯度可得到进一步改善,方法是使通道顺序随机化,如图8所示。此时,随机化使用专利技术,对四个通道的顺序进行间歇性加扰无需通过另一个(第五个)通道来达成,从而省下了与此相关的功耗。如图8所示,经过随机化之后,结果频谱中仅有常规谐波失真。
图6. AD9652的输出频谱,时钟为 fs=310 MHz,采用fIN ~70 MHz的正弦输入。此时,未施加通道校准和随机化。2次(HD2)和混叠3次(HD3)谐波分别在大约140 MHz和100 MHz处可见。交错(IL)杂散同样可见。这些是直流、fs/2(图中的OS2)以及fs/4(图中的OS4)处的失调音。另外,增益(时序)杂散可见于fs /2-fIN(图中的GS2)、fs /4+fIN(图中的GS4+)以及fs /4- fIN(图中的GS4-)。此图中的SNR查询人为变差了,因为部分杂散成分和噪声功率混在了一起。
图7. 同一个AD9652的输出频谱,采用同样的输入,但经过校准后四个通道减少了失配。与图6相比,虽然2次和3次谐波未受影响,但交错杂散的功率大幅下降,并且SFDR改善了30 dB,即从57 dBc到87 dBc。
图8. 上例开启交错顺序随机化之后的输出频谱。随机化残留交错杂散可将它们的功率扩散到噪底中,相应的尖峰便消失了。可以看到的仅有常规谐波失真。SNR几乎未受影响,因为来自交错音并扩散的杂散功率经过失配校准后可以忽略。
- 12位串行A/D转换器MAX187的应用(10-06)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- 12位串行A/D转换器的原理及应用开发(10-09)
- 在射击探测器中增加口径确定功能的简单电路(11-13)
- 一种折叠共源共栅运算放大器的设计(11-20)
- 深入解析:模拟前端模/数转换器的三种类型 (11-26)