硅频率控制器(SFC) - 晶体替代市场的宠儿
时间:08-22
来源:互联网
点击:
作者:IDT 公司 赵磊
引言
晶体的主要组成部分是二氧化硅,俗称石英。石英具有非凡的机械和压电特性,使得从19世纪40年代中期以来一直作为基本的时钟器件。如今,只要需要时钟的地方,工程师首先想到的就是晶体,但是随着应用的不断深入,晶体的一些固有的缺陷也随之暴露出来。如今新技术不断涌现,并带来很大的变化。
晶体的特点及参数
封装
晶体的封装如图1所示,有三部分组成:金属上盖,带有电极的石英片和陶瓷底座。一般来说,还需要向密封壳内充氮气。
图1 晶体封装图
现在几乎所有的陶瓷密封装都是由三家日本公司提供,但是由于日本地震和海啸,产量严重受影响。今后很长一段时间将难以满足市场需求。
石英材料
石英以其固有的压电特性成为晶体中的主要部分。但是它必须经过切割打磨才能使用,由于其厚度非常薄,虽然采取了保护措施,但是其抗震性一直是大家所担心的。
精度
所谓精度就是实际的时钟频率偏离标准时钟频率的程度。用公式表示为:
Error (PPM) = (Factual-Ftarget) / Ftarget * 10E6
Error:精度
Factual:实际频率
Ftarget:标准频率
PPM:百万分之一
在晶体的应用中,有这几个方面需要考虑:
1) 频率公差:就是在通常的环境温度下(25°C+/-5°C)实际频率偏离标准频率的值。
2) 频率温度特征:就是在整个温度变化范围内,实际频率偏离标准频率的值。现在通常有三种温度范围:0°C--70°C,-20°C--70°C和-40°C--85°C。
3) 老化:晶体的内部特性随着时间的推移发生变化引起的频率的偏差,称为晶体的老化。一般来说,第一年晶体的精度受老化的影响为5PPM,以后每年大约为1-3PPM。如果一个产品的设计生命周期为10年,则老化带来的频率精度变化最高可达32PPM。
4) 负载电容精度变化引起频率的变化:这个因素往往容易被忽视。在晶体的应用中有两种工作模式,串行振荡模式和并行振荡模式。由于并行模式设计灵活并且有很高的输出精度,现在已成为市场主流。 图2是并行振荡模式的等效电路图:
图2 并行振荡模式等效电路图
R1:动态阻抗
C1:动态电容
L1:动态电感
C0:静态电容
CL:负载电容
并行振荡模式的频率可根据以下公式:
FL=[1/2π√(L1*C1))]*√[1+C1/(C0+CL)]
其中[1/2π√(L1*C1))]是晶体串行振荡模式的频率
根据泰勒展开:
FL=[1/2π√(L1*C1)]*[1+C1/2(C0+CL)] (1)
从公式中可以看出,频率与C0,C1和CL都有关。
在基频谐振中C1为10-30fF,一般取值为20fF。C0取值与晶体的尺寸有关,一般取值为5pF。但是CL的计算与晶体外接电容和PCB设计和材料有关。下图是参考电路图
图3 晶体外接负载电容示意图
从上面电路中可得出:
1/(C11+CS1)+1/(C12+CS2)=1/(CL) (2)
其中C11,C12是外接电容,也就是线路设计中放在晶体两边接地的两个电容。CS1和CS2是寄生电容,和PCB 电路板的走线,焊盘及芯片的管脚有关。一般为5-10pF(在本文的计算中可设为8pF)。对于C11和C12,没有确定的值(15pF-30pF),这和实际设计有关,例如取18pF。
CL如有变化,并行振荡模式的频率也随之变化,请看图4
图4 负载电容变化与频率的关系
由公式(1)可得频率变化为:
(FCL1-FCL2)/FCL1=C1/2 * [1/(C0+CL1)-1/(C0+CL2)] * 10E6 (3)
从公式(2)和公式(3)中可知C11和C12的精度将影响频率的精度。具体数据如表1所示。其中参数的取值如前文:C1=20fF,C0=5pF,CS1=CS2=8pF,C11=C12=18pF。
表1 电容精度与频率精度的关系
电容精度 CL1 CL2 影响频率精度(PPM)
0.50% 12.955 13.045 3
1% 12.910 13.090 6
5% 12.550 13.450 28
10% 12.100 13.900 56
20% 11.200 14.800 112
在很多应用场合,电容精度取5%,从上表可看出它对频率精度的影响可达到28PPM。这在设计中容易被忽略的。
5) 其他因素:如回流焊接的影响,湿度的影响,大气压的影响等。这些因素影响不大,不再这里详述。
晶体振荡总的频率精度就是上述五个方面之和。
引言
晶体的主要组成部分是二氧化硅,俗称石英。石英具有非凡的机械和压电特性,使得从19世纪40年代中期以来一直作为基本的时钟器件。如今,只要需要时钟的地方,工程师首先想到的就是晶体,但是随着应用的不断深入,晶体的一些固有的缺陷也随之暴露出来。如今新技术不断涌现,并带来很大的变化。
晶体的特点及参数
封装
晶体的封装如图1所示,有三部分组成:金属上盖,带有电极的石英片和陶瓷底座。一般来说,还需要向密封壳内充氮气。
图1 晶体封装图
现在几乎所有的陶瓷密封装都是由三家日本公司提供,但是由于日本地震和海啸,产量严重受影响。今后很长一段时间将难以满足市场需求。
石英材料
石英以其固有的压电特性成为晶体中的主要部分。但是它必须经过切割打磨才能使用,由于其厚度非常薄,虽然采取了保护措施,但是其抗震性一直是大家所担心的。
精度
所谓精度就是实际的时钟频率偏离标准时钟频率的程度。用公式表示为:
Error (PPM) = (Factual-Ftarget) / Ftarget * 10E6
Error:精度
Factual:实际频率
Ftarget:标准频率
PPM:百万分之一
在晶体的应用中,有这几个方面需要考虑:
1) 频率公差:就是在通常的环境温度下(25°C+/-5°C)实际频率偏离标准频率的值。
2) 频率温度特征:就是在整个温度变化范围内,实际频率偏离标准频率的值。现在通常有三种温度范围:0°C--70°C,-20°C--70°C和-40°C--85°C。
3) 老化:晶体的内部特性随着时间的推移发生变化引起的频率的偏差,称为晶体的老化。一般来说,第一年晶体的精度受老化的影响为5PPM,以后每年大约为1-3PPM。如果一个产品的设计生命周期为10年,则老化带来的频率精度变化最高可达32PPM。
4) 负载电容精度变化引起频率的变化:这个因素往往容易被忽视。在晶体的应用中有两种工作模式,串行振荡模式和并行振荡模式。由于并行模式设计灵活并且有很高的输出精度,现在已成为市场主流。 图2是并行振荡模式的等效电路图:
图2 并行振荡模式等效电路图
R1:动态阻抗
C1:动态电容
L1:动态电感
C0:静态电容
CL:负载电容
并行振荡模式的频率可根据以下公式:
FL=[1/2π√(L1*C1))]*√[1+C1/(C0+CL)]
其中[1/2π√(L1*C1))]是晶体串行振荡模式的频率
根据泰勒展开:
FL=[1/2π√(L1*C1)]*[1+C1/2(C0+CL)] (1)
从公式中可以看出,频率与C0,C1和CL都有关。
在基频谐振中C1为10-30fF,一般取值为20fF。C0取值与晶体的尺寸有关,一般取值为5pF。但是CL的计算与晶体外接电容和PCB设计和材料有关。下图是参考电路图
图3 晶体外接负载电容示意图
从上面电路中可得出:
1/(C11+CS1)+1/(C12+CS2)=1/(CL) (2)
其中C11,C12是外接电容,也就是线路设计中放在晶体两边接地的两个电容。CS1和CS2是寄生电容,和PCB 电路板的走线,焊盘及芯片的管脚有关。一般为5-10pF(在本文的计算中可设为8pF)。对于C11和C12,没有确定的值(15pF-30pF),这和实际设计有关,例如取18pF。
CL如有变化,并行振荡模式的频率也随之变化,请看图4
图4 负载电容变化与频率的关系
由公式(1)可得频率变化为:
(FCL1-FCL2)/FCL1=C1/2 * [1/(C0+CL1)-1/(C0+CL2)] * 10E6 (3)
从公式(2)和公式(3)中可知C11和C12的精度将影响频率的精度。具体数据如表1所示。其中参数的取值如前文:C1=20fF,C0=5pF,CS1=CS2=8pF,C11=C12=18pF。
表1 电容精度与频率精度的关系
电容精度 CL1 CL2 影响频率精度(PPM)
0.50% 12.955 13.045 3
1% 12.910 13.090 6
5% 12.550 13.450 28
10% 12.100 13.900 56
20% 11.200 14.800 112
在很多应用场合,电容精度取5%,从上表可看出它对频率精度的影响可达到28PPM。这在设计中容易被忽略的。
5) 其他因素:如回流焊接的影响,湿度的影响,大气压的影响等。这些因素影响不大,不再这里详述。
晶体振荡总的频率精度就是上述五个方面之和。
IDT 电容 电路图 电路 电感 PCB MEMS CMOS 振荡器 电流 相关文章:
- 基于90E46的单相智能电表设计方案(08-09)
- IDT90E46:带温补高精度RTC的宽量程单相计量SOC概述(08-09)
- IDT90E46:带RTC的宽量程单相计量SOC开发必读(独家)(10-11)
- 手机无线充电正当时,TI/IDT/NXP主流无线充电芯片有哪几款(07-28)
- IDT90E46:带RTC的宽量程单相计量SOC开发必读(10-11)
- 90E46:带温补高精度RTC的单相电能计量SOC(08-27)