揭开Σ-Δ型模数转换器(ADC)的神秘面纱
时间:10-29
来源:互联网
点击:
二、MAXIM的新型Σ-ΔADC
新型高集成度Σ-ΔADC正在得到越来越广泛的应用,这种ADC只需极少外接元件就可直接处理微弱信号。MAX1402便是这种新一代ADC的一个范例,大多数信号处理功能已被集成于芯片内部,可视为一个片上系统,如图3所示。该器件在480sps工作速率下可提供16bit精度,4800sps时精度达12bit,工作模式下仅消耗250μA的电流,掉电模式仅消耗2μA。信号通道包含一个灵活的输入多路复用器,可被设置为3路全差分信号或5路伪差分信号、2个斩波放大器,1个可编程PGA(增益从1"128)、1个用于消除系统偏移的粗调DAC和1个二阶Σ-Δ调制器。调制器产生的1bit数据流被送往一个集成的数字滤波器进行精处理(配置为SINC1或SINC3)。转换结果可通过SPITM/QSPITM兼容的三线串行接口读取。另外,该芯片还包含有2个全差分输入通道,用于系统校准(失调和增益);2个匹配的200μA电流源,用于传感器激励(例如可用于3线/4线RTD);2个"泵出"电流,用于检测选定传感器的完整性。通过串行接口访问器件内部的8个片内寄存器,可对器件的工作模式进行编程。输入通道可以在外部命令的控制下进行采样或者连续采样,通过SCAN控制位设定,转换结果中附加有3bit"通道标识"位,用来确定输入通道。
图3 MAX1402原理框图
两个附加的校准通道CALOFF和CALGAIN可用来校准测量系统。此时可将CALOFF输入连接到地,将CALGAIN输入连接到参考电压。对上述通道的测量结果求取平均后可用来对测量结果进行校准。
三、Σ-ΔADC的应用
1. 热电偶测量及冷端补偿
如图4所示,在本应用中,MAX1402工作在缓冲方式,以便允许在前端采用比较大的去耦电容(用来消除热电偶引线拾取的噪声)。为适应输入缓冲器的共模范围,采用参考电压对AIN2输入加以偏置。在使用热电偶测温时,要获得精确的测量结果,必须进行冷端补偿。热电偶输出电压可表示为
V=α(t1-tref)
其中α是与热电偶材料有关的Seebeck常数,t1是待测温度,tref是接线盒处的温度。为了对tref造成的误差进行补偿,可以在热电偶输出端采用二极管补偿;也可以测出接线盒处的温度,然后用软件进行补偿。在本例中,差分输入通道AIN3、AIN4被用来测量P-N结的温度(用内部200μA电流源加以偏置)。
图4 热电偶测量及冷端补偿
2.3线和4线RTD测量
铂电阻温度传感器(RTD)被许多需要测量温度的应用所优选,因为它们具有优异的精度和互换性。一个在0℃时具有100Ω电阻的RTD,到+266℃时电阻会达到200Ω,灵敏度非常低,约为ΔR/Δt=100Ω/266℃。200μA的激励电流在0℃时可产生20mV输出,+266℃时输出40mV。MAX1402可直接处理这种低电平的信号。
根据不同应用,引线电阻对于测量精度会产生不同程度的影响。一般来讲,如果RTD靠近转换器,采用最简单的两线结构即可;而当RTD比较远时,引线电阻会叠加入RTD阻抗,并给测量结果引入显著误差。这种情况通常采用3线或4线RTD配置,如图5所示。
图5 3线和4线RTD测量
MAX1402内部两个匹配的200μA电流源可用来补偿3线或4线RTD配置中引线电阻造成的误差。在3线配置中,两个匹配的200μA电流源分别流过RL1和RL2,这样,AIN1和AIN2端的差分电压将不受引线电阻的影响。这种补偿方法成立的前提是两条引线材质相同,并具有相同的长度,还要求两个电流源的温度系数精确匹配(MAX1402为5×10-6/℃)。4线配置中引线电阻将不会引入任何误差,因为在连接到AIN1和AIN2的测量引线中基本上没有电流流过。在此配置中,电流源OUT1被用来激励RTD传感器,电流源OUT2被用来产生参考电压。在这种比例型配置中,RTD的温漂误差(由RTD激励电流的温漂引起)被参考电压的漂移补偿。
3. 智能4"20mA变送器
老式的4"20mA变送器采用一个现场安装的敏感元件感测一些物理信息,例如压力或温度等,然后产生一个正比于待测物理量的电流,电流的变化范围标准化为4"20mA。电流环具有很多优点:测量信号对于噪声不敏感;可以方便地进行远端供电。第二代4"20mA变送器在远端进行一些信号处理,通常采用微控制器和数据转换器,如图6所示。这种变送器首先将信号数字化,然后采用微控制器内置的算法进行处理,对增益和零点进行标准化,对传感器进行线性化,最后再将信号转换到模拟域,作为一个标准电流通过环路传送。第三代4"20mA变送器被称为"灵巧且智能",实际上是在前述功能的基础上增加了数字通信(和传统的4"20mA信号共用同一条双绞线)。利用通信信道可以传送一些控制和诊断信号。MAX1402这样的低功耗器件对于此类应用非常适合,250μA的功耗可以为变送器中的其余电路节省出可观的功率。智能变送器所采用的通信标准是Hart协议。这是一种基于Bell 202电信标准的通信协议,工作于频移键控方式(FSK)。数字信号由两种频率组成:1200Hz和2200Hz,分别对应于数码1和0。两种频率的正弦波叠加在直流模拟信号上,通过同一条电缆同时传送。因为FSK信号的平均值总是零,因此4"20mA模拟信号不会受到影响。在不干扰模拟信号的前提下,数字通信信号具有每秒更新2"3个数据的响应速度。通信所需的最小环路阻抗是23Ω。
图6 智能4"20mA变送器
新型高集成度Σ-ΔADC正在得到越来越广泛的应用,这种ADC只需极少外接元件就可直接处理微弱信号。MAX1402便是这种新一代ADC的一个范例,大多数信号处理功能已被集成于芯片内部,可视为一个片上系统,如图3所示。该器件在480sps工作速率下可提供16bit精度,4800sps时精度达12bit,工作模式下仅消耗250μA的电流,掉电模式仅消耗2μA。信号通道包含一个灵活的输入多路复用器,可被设置为3路全差分信号或5路伪差分信号、2个斩波放大器,1个可编程PGA(增益从1"128)、1个用于消除系统偏移的粗调DAC和1个二阶Σ-Δ调制器。调制器产生的1bit数据流被送往一个集成的数字滤波器进行精处理(配置为SINC1或SINC3)。转换结果可通过SPITM/QSPITM兼容的三线串行接口读取。另外,该芯片还包含有2个全差分输入通道,用于系统校准(失调和增益);2个匹配的200μA电流源,用于传感器激励(例如可用于3线/4线RTD);2个"泵出"电流,用于检测选定传感器的完整性。通过串行接口访问器件内部的8个片内寄存器,可对器件的工作模式进行编程。输入通道可以在外部命令的控制下进行采样或者连续采样,通过SCAN控制位设定,转换结果中附加有3bit"通道标识"位,用来确定输入通道。
图3 MAX1402原理框图
两个附加的校准通道CALOFF和CALGAIN可用来校准测量系统。此时可将CALOFF输入连接到地,将CALGAIN输入连接到参考电压。对上述通道的测量结果求取平均后可用来对测量结果进行校准。
三、Σ-ΔADC的应用
1. 热电偶测量及冷端补偿
如图4所示,在本应用中,MAX1402工作在缓冲方式,以便允许在前端采用比较大的去耦电容(用来消除热电偶引线拾取的噪声)。为适应输入缓冲器的共模范围,采用参考电压对AIN2输入加以偏置。在使用热电偶测温时,要获得精确的测量结果,必须进行冷端补偿。热电偶输出电压可表示为
V=α(t1-tref)
其中α是与热电偶材料有关的Seebeck常数,t1是待测温度,tref是接线盒处的温度。为了对tref造成的误差进行补偿,可以在热电偶输出端采用二极管补偿;也可以测出接线盒处的温度,然后用软件进行补偿。在本例中,差分输入通道AIN3、AIN4被用来测量P-N结的温度(用内部200μA电流源加以偏置)。
图4 热电偶测量及冷端补偿
2.3线和4线RTD测量
铂电阻温度传感器(RTD)被许多需要测量温度的应用所优选,因为它们具有优异的精度和互换性。一个在0℃时具有100Ω电阻的RTD,到+266℃时电阻会达到200Ω,灵敏度非常低,约为ΔR/Δt=100Ω/266℃。200μA的激励电流在0℃时可产生20mV输出,+266℃时输出40mV。MAX1402可直接处理这种低电平的信号。
根据不同应用,引线电阻对于测量精度会产生不同程度的影响。一般来讲,如果RTD靠近转换器,采用最简单的两线结构即可;而当RTD比较远时,引线电阻会叠加入RTD阻抗,并给测量结果引入显著误差。这种情况通常采用3线或4线RTD配置,如图5所示。
图5 3线和4线RTD测量
MAX1402内部两个匹配的200μA电流源可用来补偿3线或4线RTD配置中引线电阻造成的误差。在3线配置中,两个匹配的200μA电流源分别流过RL1和RL2,这样,AIN1和AIN2端的差分电压将不受引线电阻的影响。这种补偿方法成立的前提是两条引线材质相同,并具有相同的长度,还要求两个电流源的温度系数精确匹配(MAX1402为5×10-6/℃)。4线配置中引线电阻将不会引入任何误差,因为在连接到AIN1和AIN2的测量引线中基本上没有电流流过。在此配置中,电流源OUT1被用来激励RTD传感器,电流源OUT2被用来产生参考电压。在这种比例型配置中,RTD的温漂误差(由RTD激励电流的温漂引起)被参考电压的漂移补偿。
3. 智能4"20mA变送器
老式的4"20mA变送器采用一个现场安装的敏感元件感测一些物理信息,例如压力或温度等,然后产生一个正比于待测物理量的电流,电流的变化范围标准化为4"20mA。电流环具有很多优点:测量信号对于噪声不敏感;可以方便地进行远端供电。第二代4"20mA变送器在远端进行一些信号处理,通常采用微控制器和数据转换器,如图6所示。这种变送器首先将信号数字化,然后采用微控制器内置的算法进行处理,对增益和零点进行标准化,对传感器进行线性化,最后再将信号转换到模拟域,作为一个标准电流通过环路传送。第三代4"20mA变送器被称为"灵巧且智能",实际上是在前述功能的基础上增加了数字通信(和传统的4"20mA信号共用同一条双绞线)。利用通信信道可以传送一些控制和诊断信号。MAX1402这样的低功耗器件对于此类应用非常适合,250μA的功耗可以为变送器中的其余电路节省出可观的功率。智能变送器所采用的通信标准是Hart协议。这是一种基于Bell 202电信标准的通信协议,工作于频移键控方式(FSK)。数字信号由两种频率组成:1200Hz和2200Hz,分别对应于数码1和0。两种频率的正弦波叠加在直流模拟信号上,通过同一条电缆同时传送。因为FSK信号的平均值总是零,因此4"20mA模拟信号不会受到影响。在不干扰模拟信号的前提下,数字通信信号具有每秒更新2"3个数据的响应速度。通信所需的最小环路阻抗是23Ω。
图6 智能4"20mA变送器
ADC 滤波器 放大器 比较器 DAC 电压 低通滤波器 电流 传感器 电容 二极管 电阻 温度传感器 电路 相关文章:
- 12位串行A/D转换器MAX187的应用(10-06)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- 12位串行A/D转换器的原理及应用开发(10-09)
- 在射击探测器中增加口径确定功能的简单电路(11-13)
- 一种折叠共源共栅运算放大器的设计(11-20)
- 深入解析:模拟前端模/数转换器的三种类型 (11-26)