微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 性能最大化ΔΣ 转换器

性能最大化ΔΣ 转换器

时间:09-02 来源:互联网 点击:
输入阻抗与斩波稳定性

可把 ΔΣ 转换器的模拟输入看作一个开关和电容器。切换频率的等效结果是一个电阻器连续连接到内部电容器,因此,转换器的输入阻抗直接与切换频率相关。对于MSC1210 来说,输入阻抗如下:(公式略)

如果采样率为15.625 kHz,PGA 为 1,那么,输入阻抗为 5MW。更高的采样率和PGA值会降低该值,为了消除这种影响,许多 ΔΣ 转换器提供一个片上缓冲器。即使采用缓冲器,仍然存在某些阻碍提供高直流精度的输入信号采样。

可编程增益放大器 (PGA)

许多 ΔΣ 转换器提供片上 PGA,但是,它们并不提供相同或预期的效果。某些高增益结果上只是数字数据的漂移,或者乘以 2,基本上没有什么益处。通过仔细检查数据表即可看出这些事实。如果通过因数 2 提高 PGA 同样可降低 ENOB,就没有实际的净增益,而且只意味着噪声涵盖更多的输出电平。

某些时候可采用较小的参考电压提高增益,因为参考电压决定 FS 信号范围。把参考电压降低 50% 可使输入信号增益为 2,但是,这种增益提高会导致低参考电压的噪声限制。

建立时间

建立时间是多通道系统中影响数据吞吐率的另一个因素。为了实现高性能,ΔΣ 转换器通常采用 FIR 滤波器,如:sinc3 滤波器。其优势是在整个滤波器中信号延迟均是固定的,而且也易于进行调整,以便采用更多延迟采样阶段来实现可变的抽样水平。在更多滤波阶段情况下,输出数据速率较低,一个 sinc3 滤波器需要三个转换周期以完全达到预期的精确度。

建立时间会导致通道切换后的前几个采样存在建立误差,这个问题已经在 MSC1210 中得到解决,方法是采用三种滤波器以及可在通道切换后选择最佳滤波器的自动模式。对于改变多路复用器后的前两个采样,采用最快的建立滤波器,然后采用 sinc2 滤波器,最终采样全部采用 sinc3 滤波器。这样就可以完全建立所有转换结果。

对于多路复用数据系统来说,解决建立时间问题的一个方法是采用快得多的数据速率并求输出的平均值。例如,假设希望采用 60Hz 的数据输出率来获得 60Hz 的衰减滤波的优势,可采用 240Hz 的采样率并平均 4 个采样值来获得最终 60Hz 的数据速率,其优势是,当前滤波器建立时间已经从 60Hz 时的 4 个采样(非同步通道切换)(66.6ms) 降低到 240Hz时的 4 个采样 (16.6ms)。建立时间现在是一个 60Hz 数据速率的采样周期,同时可保留60Hz 衰减滤波器的优势。在 MSC1210 中,设置了一个 32 位累加器来求 4 个采样的平均值,抛弃通道切换后的第一个结果(假设通道切换与 60Hz 输出速率同步)。

抗混淆

在数据采集系统中主要采用两种滤波器响应:平坦通带和 sinc。平坦通带滤波器具有达到截止频率的低衰减,然后是较大的抑止带衰减,直到达到耐奎斯特频率。这使得更易于设计抗混淆滤波器,因为耐奎斯特频率通常比关断频率高64倍。所有需要的可能只是一个简单的 R-C 滤波器。



图 4:sinc 滤波器的波瓣

其他类型的滤波器,如:sinc 滤波器,并不提供与从数据速率到耐奎斯特频率(参见图 3)相同的,以及在采样率之后有多个波瓣的高衰减。如果您希望实现 100dB 的抑止带衰减,必须设计滤波器使其过滤掉 sinc 滤波器衰减降低40dB 的频率元件。但是,在设计抗混淆滤波器时,重要的是要牢记:高频信号并非是满幅度的。如果预期的混淆信号元件已经达到 -20dB 的最高水平,为了实现 sinc 滤波器100dB的衰减(参见图 4),抗混淆滤波器只需降低 40dB。这是因为 sinc 滤波器提供 40dB,假设信号达到 -20dB 的最大值,这意味着抗混淆滤波器只需要增加额外的 40dB 的衰减。但是,如果您希望通带包含接近数据速率频率的话,这仍然是一个重要的要求。

漂移

对于超低频率来说,存在多个噪声源,其中一个称为 1/f 噪声。输入斩波可消除大部分此类噪声,但仍然存在其他能够在高性能系统中造成低频漂移的因素。必须注意如何在板上焊接元件,以避免机械应力、热梯度、热电偶结点,以及封装定向等,它们均可作为漂移影响信号质量。可采用艾伦变量等技术观察这些影响并分析从系统中消除它们成功与否。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top