微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 一种结构简单性能优良的AGC电路

一种结构简单性能优良的AGC电路

时间:06-09 来源:互联网 点击:


图3:AGC增益分配情况


由以上分析可知,当AGC控制电压VAGC从5.1V到6.85V变化时,两级AD603的总增益将从-16dB到54dB线性增加。现在需要做的是调整9018的工作点,使得当输入信号适当变化时,能够从9018的集电极取出从5.1V到6.85V变化的AGC控制电压VAGC。由图2可以看出,VAGC的大小取决于R7的阻值和集电极电流的大小。

在无信号输入时,调整9018的静态工作点,使9018发射极的PN结处于近似截止状态,并调整R7的阻值使得VAGC为6.85V,此时两级AD603的增益全部放开,即54dB;当有信号输入,但其信号强度尚不能使9018发射极的PN结导通时,AGC处于失控状态,输出信号将随着输入信号强度的增大而增大;当信号强度足以使9018发射极的PN结导通时,9018处于AGC检波状态,此时AGC开始起控,VAGC大约以25mV/dB的速率下降,直至下降到5.1V。对应的两级AD603的增益也开始逐渐从54dB下降到-16dB,先是第二级AD603的增益逐渐从24dB下降到-10dB,然后第一级AD603的增益也开始逐渐从30dB下降到-6dB。此时,AGC进入饱和点,输入信号强度再增大时,AGC已失去控制作用,输出信号又将随着输入信号强度的增大而增大。这就是AGC的整个控制过程,即随着输入信号强度的不断增大,AGC将历经失控、开始起控、进入饱和、再次失控的控制过程。

● AGC起控点与饱和点的选取和计算

AGC起控点与饱和点的选取应根据具体的应用来计算。假设要求信号经AGC放大后,其信号强度稳定在W(dBm),AGC增益范围为Ga~Gb(dB),则AGC起控点电平(dBm)为W-Gb;AGC饱和点电平(dBm)为W-Ga。在应用中,要求信号经两级AD603的放大后,其信号强度基本稳定在-10dBm,而AGC增益范围为-16~54dB,因此AGC起控点电平应为-10-54=-64(dBm);AGC饱和点电平应为-10-(-16)=6(dBm)。故此AGC所能处理的信号的动态范围为-64~6dBm,共70dB。

AGC起控点的调整可通过改变R5的阻值来实现。事实上,改变R5的阻值也就是调整9018发射极的PN结压降。此PN结用于AGC检波时,其压降大约被偏置在500~700mV之间。假设在工作过程中此PN结的瞬时压降为600mV时,AGC开始起控,又假设要求的AGC起控点电平为-30dBm(20mV),那么,可以通过调整R5的阻值使得此PN结被偏置在580mV,则当输入信号电平达到20mV时,此PN结的瞬时压降为600mV,AGC开始起控。以上只是定性的近似分析,在实际电路的实现中,要根据测量结果,反复调整R5的阻值,才能满足AGC起控点的要求。当然,AGC起控点有一个下限。就图2所示AGC控制电路来讲,其AGC控制下限取决于9018发射极PN结压降的调整精度,经实际测量,此值大约在100μV(-76dBm)左右。

实验数据

将整个电路按图4所示连接进行闭环测试。在测试过程中,通过调整HP-8920A的可变衰减器来改变输入信号强度的大小,输出信号强度由HP-E4405B观测,同时,通过万用表测试VAGC的电压值,测试数据如表2所示。


图4:AGC测试框图


表2:AGC测试数据


由表2的测试数据可以看出,输入信号强度从-64dBm到6dBm变化时,AGC控制电路能够相应地调节AGC控制电压VAGC的大小,从而改变AD603的增益,使其输出信号强度基本稳定在-10dBm,整个控制范围在70dB以上,满足设计要求。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top