这样讲你就懂了!大牛给你介绍《信号与系统》
时间:02-26
来源:互联网
点击:
引子
很多朋友和我一样,工科电子类专业,学了一堆信号方面的课,什么都没学懂,背了公式考了试,然后毕业了。
先说"卷积有什么用"这个问题。(有人抢答,"卷积"是为了学习"信号与系统"这门课的后续章节而存在的。我大吼一声,把他拖出去*毙!)
讲一个故事:
张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"信号与系统"这门课程。一天,他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限的输入信号只会产生有限的输出。
然后,经理让张三测试当输入sin(t)(t卷积!"
从此,张三的工作轻松多了。每次经理让他测试一些信号的输出结果,张三都只需要在A4纸上做微积分就是提交任务了!
----------------------------------------
张三愉快地工作着,直到有一天,平静的生活被打破。
经理拿来了一个小的电子设备,接到示波器上面,对张三说: "看,这个小设备产生的波形根本没法用一个简单的函数来说明,而且,它连续不断的发出信号!不过幸好,这个连续信号是每隔一段时间就重复一次的。张三,你 来测试以下,连到我们的设备上,会产生什么输出波形!"
张三摆摆手:"输入信号是无限时长的,难道我要测试无限长的时间才能得到一个稳定的,重复的波形输出吗?"
经理怒了:"反正你给我搞定,否则炒鱿鱼!"
张三心想:"这次输入信号连公式都给出出来,一个很混乱的波形;时间又是无限长的,卷积也不行了,怎么办呢?"
及时地,上帝又出现了:"把混乱的时间域信号映射到另外一个数学域上面,计算完成以后再映射回来"
"宇宙的每一个原子都在旋转和震荡,你可以把时间信号看成若干个震荡叠加的效果,也就是若干个可以确定的,有固定频率特性的东西。"
"我给你一个数学函数f,时间域无限的输入信号在f域有限的。时间域波形混乱的输入信号在f域是整齐的容易看清楚的。这样你就可以计算了"
"同时,时间域的卷积在f域是简单的相乘关系,我可以证明给你看看"
"计算完有限的程序以后,取f(-1)反变换回时间域,你就得到了一个输出波形,剩下的就是你的数学计算了!"
张三谢过了上帝,保住了他的工作。后来他知道了,f域的变换有一个名字,叫做傅利叶,什么什么... ...
----------------------------------------
再后来,公司开发了一种新的电子产品,输出信号是无限时间长度的。这次,张三开始学拉普拉斯了......
后记:
不是我们学的不好,是因为教材不好,老师讲的也不好。
很欣赏Google的面试题: 用3句话像老太太讲清楚什么是数据库。这样的命题非常好,因为没有深入的理解一个命题,没有仔细的思考一个东西的设计哲学,我们就会陷入细节的泥沼: 背公式,数学推导,积分,做题;而没有时间来回答"为什么要这样"。做大学老师的做不到"把厚书读薄"这一点,讲不出哲学层面的道理,一味背书和翻讲 ppt,做着枯燥的数学证明,然后责怪"现在的学生一代不如一代",有什么意义吗?
第二课 到底什么是频率 什么是系统?
这一篇,我展开的说一下傅立叶变换F。注意,傅立叶变换的名字F可以表示频率的概念(freqence),也可以包括其他任何概念,因为它只是一个概念模 型,为了解决计算的问题而构造出来的(例如时域无限长的输入信号,怎么得到输出信号)。我们把傅立叶变换看一个C语言的函数,信号的输出输出问题看为IO 的问题,然后任何难以求解的x->y的问题都可以用x->f(x)->f-1(x)->y来得到。
1. 到底什么是频率?
一个基本的假设: 任何信息都具有频率方面的特性,音频信号的声音高低,光的频谱,电子震荡的周期,等等,我们抽象出一个件谐振动的概念,数学名称就叫做频率。想象在x-y 平面上有一个原子围绕原点做半径为1匀速圆周运动,把x轴想象成时间,那么该圆周运动在y轴上的投影就是一个sin(t)的波形。相信中学生都能理解这 个。
那么,不同的频率模型其实就对应了不同的圆周运动速度。圆周运动的速度越快,sin(t)的波形越窄。频率的缩放有两种模式
(a) 老式的收音机都是用磁带作为音乐介质的,当我们快放的时候,我们会感觉歌唱的声音变得怪怪的,调子很高,那是因为"圆周运动"的速度增倍了,每一个声音分量的sin(t)输出变成了sin(nt)。
(b) 在CD/计算机上面快放或满放感觉歌手快唱或者慢唱,不会出现音调变高的现象:因为快放的时候采用了时域采样的方法,丢弃了一些波形,但是承载了信息的输出波形不会有宽窄的变化;满放时相反,时域信号填充拉长就可以了。
很多朋友和我一样,工科电子类专业,学了一堆信号方面的课,什么都没学懂,背了公式考了试,然后毕业了。
先说"卷积有什么用"这个问题。(有人抢答,"卷积"是为了学习"信号与系统"这门课的后续章节而存在的。我大吼一声,把他拖出去*毙!)
讲一个故事:
张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"信号与系统"这门课程。一天,他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限的输入信号只会产生有限的输出。
然后,经理让张三测试当输入sin(t)(t卷积!"
从此,张三的工作轻松多了。每次经理让他测试一些信号的输出结果,张三都只需要在A4纸上做微积分就是提交任务了!
----------------------------------------
张三愉快地工作着,直到有一天,平静的生活被打破。
经理拿来了一个小的电子设备,接到示波器上面,对张三说: "看,这个小设备产生的波形根本没法用一个简单的函数来说明,而且,它连续不断的发出信号!不过幸好,这个连续信号是每隔一段时间就重复一次的。张三,你 来测试以下,连到我们的设备上,会产生什么输出波形!"
张三摆摆手:"输入信号是无限时长的,难道我要测试无限长的时间才能得到一个稳定的,重复的波形输出吗?"
经理怒了:"反正你给我搞定,否则炒鱿鱼!"
张三心想:"这次输入信号连公式都给出出来,一个很混乱的波形;时间又是无限长的,卷积也不行了,怎么办呢?"
及时地,上帝又出现了:"把混乱的时间域信号映射到另外一个数学域上面,计算完成以后再映射回来"
"宇宙的每一个原子都在旋转和震荡,你可以把时间信号看成若干个震荡叠加的效果,也就是若干个可以确定的,有固定频率特性的东西。"
"我给你一个数学函数f,时间域无限的输入信号在f域有限的。时间域波形混乱的输入信号在f域是整齐的容易看清楚的。这样你就可以计算了"
"同时,时间域的卷积在f域是简单的相乘关系,我可以证明给你看看"
"计算完有限的程序以后,取f(-1)反变换回时间域,你就得到了一个输出波形,剩下的就是你的数学计算了!"
张三谢过了上帝,保住了他的工作。后来他知道了,f域的变换有一个名字,叫做傅利叶,什么什么... ...
----------------------------------------
再后来,公司开发了一种新的电子产品,输出信号是无限时间长度的。这次,张三开始学拉普拉斯了......
后记:
不是我们学的不好,是因为教材不好,老师讲的也不好。
很欣赏Google的面试题: 用3句话像老太太讲清楚什么是数据库。这样的命题非常好,因为没有深入的理解一个命题,没有仔细的思考一个东西的设计哲学,我们就会陷入细节的泥沼: 背公式,数学推导,积分,做题;而没有时间来回答"为什么要这样"。做大学老师的做不到"把厚书读薄"这一点,讲不出哲学层面的道理,一味背书和翻讲 ppt,做着枯燥的数学证明,然后责怪"现在的学生一代不如一代",有什么意义吗?
第二课 到底什么是频率 什么是系统?
这一篇,我展开的说一下傅立叶变换F。注意,傅立叶变换的名字F可以表示频率的概念(freqence),也可以包括其他任何概念,因为它只是一个概念模 型,为了解决计算的问题而构造出来的(例如时域无限长的输入信号,怎么得到输出信号)。我们把傅立叶变换看一个C语言的函数,信号的输出输出问题看为IO 的问题,然后任何难以求解的x->y的问题都可以用x->f(x)->f-1(x)->y来得到。
1. 到底什么是频率?
一个基本的假设: 任何信息都具有频率方面的特性,音频信号的声音高低,光的频谱,电子震荡的周期,等等,我们抽象出一个件谐振动的概念,数学名称就叫做频率。想象在x-y 平面上有一个原子围绕原点做半径为1匀速圆周运动,把x轴想象成时间,那么该圆周运动在y轴上的投影就是一个sin(t)的波形。相信中学生都能理解这 个。
那么,不同的频率模型其实就对应了不同的圆周运动速度。圆周运动的速度越快,sin(t)的波形越窄。频率的缩放有两种模式
(a) 老式的收音机都是用磁带作为音乐介质的,当我们快放的时候,我们会感觉歌唱的声音变得怪怪的,调子很高,那是因为"圆周运动"的速度增倍了,每一个声音分量的sin(t)输出变成了sin(nt)。
(b) 在CD/计算机上面快放或满放感觉歌手快唱或者慢唱,不会出现音调变高的现象:因为快放的时候采用了时域采样的方法,丢弃了一些波形,但是承载了信息的输出波形不会有宽窄的变化;满放时相反,时域信号填充拉长就可以了。
- 变革电信网网络安全框架 (01-03)
- 浅谈IPv6技术的若干问题(01-09)
- LG电子低成本CDMA手机的设计原则剖析 (01-12)
- 专家教你做个病毒高手(04-30)
- 数据库归档要考虑的四大问题(05-26)
- 5个步骤成功加密电子邮件(07-18)
射频专业培训教程推荐
栏目分类