无线火灾报警系统的体系结构研究
时间:12-23
来源:互联网
点击:
四、系统工作原理
对于一个完整的火灾传感器节点,需要具有小尺寸、低功耗、适应性强的特点,Zigbee设备为低功耗设备,其发射输出0dbm~3.6dbm,通信距离为 30米~70米,具有能量检测和链路质量指示,根据这些检测结果,设备可自动调整设备的发射功率,在保证通信链路质量的条件下,最小地消耗设备能量,SD 节点在睡眠状态时,功耗电流约为30uA。在网络数据通信时,Zigbee建立一次连接的时间约为20-30ms,这样短的连接时间可以大大减少传感器节点上报给FLCH节点数据碰撞的概率;在网络安全方面,无线传感器网络在Zigbee技术上,采用了密钥长度为128位的加密算法,对所传输的数据信息进行加密处理。
SN节点由Zigbee模块(CC2420和Atmegal-128L两部分所组成)、硬件检测电路。硬件检测电路检测火灾传感器节点所在的环境,当火灾发生变化时,触发Zigbee模块的I/O中断将信息传送给Zigbee模块,模块从睡眠状态唤醒,模块利用自身的控制芯片对信息进行处理后,再以无线的方式传送给FLCH节点。
1、Zigbee模块初始化过程
Zigbee模块进行通信之前需要进行有效的初始化,初始化也是网络的完整性和有效性验证。在初始化通信过程中,FLCH节点主动广播连接信令,在SN节点成功地接收和验证一个数据帧和MAC命令帧后,向FLCH节点返回确认帧,SN节点的Zigbee模块被置于Sleep工作模式,接下来FLCH节点与 SN节点进行主从角色转换,FLCH节点模块处于从模式工作状态,等候响应连接请求信令;此时SN节点中的Zigbee模块工作在主模式下,等待着有需求时唤醒发起连接请求。在初始化结束后,SN节点Zigbee模块工作于Sleep模式,拒绝任何的连接请求。这种设计大大降低了传感器节点的功耗;并且传感器节点只是在有需求时唤醒并主动与FLCH节点建立连接,保证了FLCH节点和传感器节点间通信的安全可靠。
2、Zigbee模块信息处理过程
信息处理过程是在传感器节点的硬件检测电路检测到其所在的环境发生变化时,由传感器节点中的Zigbee模块对信息简单处理后,主动发起连接将处理后的信息传送给FLCH节点,由于在工程中测试结论已表明,该无线传感器网络的SN节点99%以上的时间处于Sleep状态,只需要周期性地监听其无线信道,判断是否有需要自己处理的数据消息,功耗的数学期望值可低至30μA。
3、Zigbee基站节点和GSM数据模块
分布在传感器网络中的基站(BS)节点主要用于接收SN节点的数据上报,并将其进行融合处理,传给TC35数据模块,通过GSM网络传递给中央信息控制中心。BS节点由Zigbee模块、MCUAtmegal-128L、GSM数据模块TC35组成。Zigbee模块和微控制器之间的连接是通过异步串行口实现的,它们之间的通信速度为38.4kBaud,由于传感器网络中分布着多个SLCH节点,因此基站节点的MCU要利用软件中断实现对不同ID 的SLCH节点上传数据轮询扫描,使SLCH节点的数据可以有序、完整地通过微控制器处理后传出。基站(BS)节点在此传感器网络中充当的是传感器节点和 GSM网络之间的网关。利用Atmegal-128L控制TC35模块完成BS节点和控制中心的通信。Atmegal-128L与TC35通过异步串行口相连,通过AT指令对GSM控制器进行写操作,模块支持标准AT指令,可采用SIMENS增强AT指令控制进行数据传输,在工程应用时,只需要给模块配备 SIM即可。
4、中央信息控制中心
中央信息控制中心由监控模块、配置模块、数据库三个部分组成。它通过GSM网络与多个汇节点间接连接在一起,监控模块通过对通信串口的实时监控,实现对分布式汇节点上报信息的及时接收、解析、处理以及发送控制信令给不同ID的SLCH节点实现对传感器节点的间接、实时性的监控和数据采集。
五、实验结果
选用GAINZ节点模块和事件驱动接口板,选取部分火灾探测智能算法,取得初步的实验结果。结果表明采用标准的网络协议,结合火灾探测系统特点,和智能算法在无线传感器网络WSN构架下,开发火灾智能无线报警系统是可行的。火灾无线传感器硬件和软件平台的设计对于整个系统的开发与应用至关重要,作为整个系统的底层支持,其必然向微型化、高度集成化、网络化、节能化、智能化的方向发展,近几年,随着计算机成本下降和微处理器体积缩小,开发和构造火灾智能无线报警系统将有广阔的应用前景。工程试验结果充分显示了技术的可行性和实现的有效性。
对于一个完整的火灾传感器节点,需要具有小尺寸、低功耗、适应性强的特点,Zigbee设备为低功耗设备,其发射输出0dbm~3.6dbm,通信距离为 30米~70米,具有能量检测和链路质量指示,根据这些检测结果,设备可自动调整设备的发射功率,在保证通信链路质量的条件下,最小地消耗设备能量,SD 节点在睡眠状态时,功耗电流约为30uA。在网络数据通信时,Zigbee建立一次连接的时间约为20-30ms,这样短的连接时间可以大大减少传感器节点上报给FLCH节点数据碰撞的概率;在网络安全方面,无线传感器网络在Zigbee技术上,采用了密钥长度为128位的加密算法,对所传输的数据信息进行加密处理。
SN节点由Zigbee模块(CC2420和Atmegal-128L两部分所组成)、硬件检测电路。硬件检测电路检测火灾传感器节点所在的环境,当火灾发生变化时,触发Zigbee模块的I/O中断将信息传送给Zigbee模块,模块从睡眠状态唤醒,模块利用自身的控制芯片对信息进行处理后,再以无线的方式传送给FLCH节点。
1、Zigbee模块初始化过程
Zigbee模块进行通信之前需要进行有效的初始化,初始化也是网络的完整性和有效性验证。在初始化通信过程中,FLCH节点主动广播连接信令,在SN节点成功地接收和验证一个数据帧和MAC命令帧后,向FLCH节点返回确认帧,SN节点的Zigbee模块被置于Sleep工作模式,接下来FLCH节点与 SN节点进行主从角色转换,FLCH节点模块处于从模式工作状态,等候响应连接请求信令;此时SN节点中的Zigbee模块工作在主模式下,等待着有需求时唤醒发起连接请求。在初始化结束后,SN节点Zigbee模块工作于Sleep模式,拒绝任何的连接请求。这种设计大大降低了传感器节点的功耗;并且传感器节点只是在有需求时唤醒并主动与FLCH节点建立连接,保证了FLCH节点和传感器节点间通信的安全可靠。
2、Zigbee模块信息处理过程
信息处理过程是在传感器节点的硬件检测电路检测到其所在的环境发生变化时,由传感器节点中的Zigbee模块对信息简单处理后,主动发起连接将处理后的信息传送给FLCH节点,由于在工程中测试结论已表明,该无线传感器网络的SN节点99%以上的时间处于Sleep状态,只需要周期性地监听其无线信道,判断是否有需要自己处理的数据消息,功耗的数学期望值可低至30μA。
3、Zigbee基站节点和GSM数据模块
分布在传感器网络中的基站(BS)节点主要用于接收SN节点的数据上报,并将其进行融合处理,传给TC35数据模块,通过GSM网络传递给中央信息控制中心。BS节点由Zigbee模块、MCUAtmegal-128L、GSM数据模块TC35组成。Zigbee模块和微控制器之间的连接是通过异步串行口实现的,它们之间的通信速度为38.4kBaud,由于传感器网络中分布着多个SLCH节点,因此基站节点的MCU要利用软件中断实现对不同ID 的SLCH节点上传数据轮询扫描,使SLCH节点的数据可以有序、完整地通过微控制器处理后传出。基站(BS)节点在此传感器网络中充当的是传感器节点和 GSM网络之间的网关。利用Atmegal-128L控制TC35模块完成BS节点和控制中心的通信。Atmegal-128L与TC35通过异步串行口相连,通过AT指令对GSM控制器进行写操作,模块支持标准AT指令,可采用SIMENS增强AT指令控制进行数据传输,在工程应用时,只需要给模块配备 SIM即可。
4、中央信息控制中心
中央信息控制中心由监控模块、配置模块、数据库三个部分组成。它通过GSM网络与多个汇节点间接连接在一起,监控模块通过对通信串口的实时监控,实现对分布式汇节点上报信息的及时接收、解析、处理以及发送控制信令给不同ID的SLCH节点实现对传感器节点的间接、实时性的监控和数据采集。
五、实验结果
选用GAINZ节点模块和事件驱动接口板,选取部分火灾探测智能算法,取得初步的实验结果。结果表明采用标准的网络协议,结合火灾探测系统特点,和智能算法在无线传感器网络WSN构架下,开发火灾智能无线报警系统是可行的。火灾无线传感器硬件和软件平台的设计对于整个系统的开发与应用至关重要,作为整个系统的底层支持,其必然向微型化、高度集成化、网络化、节能化、智能化的方向发展,近几年,随着计算机成本下降和微处理器体积缩小,开发和构造火灾智能无线报警系统将有广阔的应用前景。工程试验结果充分显示了技术的可行性和实现的有效性。
总线 传感器 电子 嵌入式 电压 射频 收发器 神经网络 电流 电路 MCU 相关文章:
- 热插拔和缓冲I2C总线 (04-14)
- PCIe总线何时突破Unix服务器坚冰(02-03)
- TMS320VC5402 HPI接口与PCI总线接口设计(04-12)
- 基于Nios II的I2C总线接口的实现(04-09)
- 双口RAM CY7C026在高速数据采集系统中的应用(04-12)
- 计算机在新型多电机同步系统中的应用(07-08)