微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 跳频与扩频:无线机器对机器接口

跳频与扩频:无线机器对机器接口

时间:11-17 来源:互联网 点击:
无线机器对机器接口代表了计算机发展的第三次浪潮。第一次浪潮是企业计算机、昂贵的主机以及只有大企业才有能力购买的超级计算机。这一阶段为上世纪的六十和七十年代。第二次计算机浪潮开始于1981 年,当时IBM 推出了个人计算机(PC)。这一时期为上世纪的八十和九十年代。新世纪带来了第三次计算机浪潮。在此期间成本降低、新技术不断涌现,使计算机中采用嵌入式处理器及无线通信像烤箱一样普及。这些处理器独立工作时可提供特定的功能,但当它们在无人为干预时,自身间相互通信时作用更大。随着小型廉价计 算机的发展,无线技术应运而生。无线移动电话技术的出现领导了这些进步技术。这些技术包括用于手机的无线网络和增长迅速的无线热点现象(图1)。

尽管M2M (机器对机器) 成了当今销售领域最流行的词,其前身无线M2M 技术早在十年前就出现了。一个已经不为人们感兴趣的术语是“遥测技术”。早期的太空计划使用无线遥测技术从太空船中向NASA 发送数据,并将控制信号返回到太空船,无需人为干预。军用频率的分配方便了NASA的工作。较高的功率级别确保了可靠的通信。最近,设计人员将空间遥测技术概念应用于车辆中,如F1赛车。车载计算机可以从车辆上将数据发送到赛道旁的计算机中,后者可自动调节空气燃油比和其它参数使赛车达到最佳性能。其它无线网络应用包括当自动售货机缺少货物或需要维护时,用“call home” 手机向管理中心报告情况。在汽车领域,术语 “telematics”(无线数据通信系统)替代了过时的词“遥测技术。”Telematics 涵盖了娱乐、导航及紧急情况使用。General Motors 率先利用此概念研制出了OnStar service。该无线数据通信系统包括功能强大的手机、车载娱乐和导航系统。可实时下载交通路况报告,允许用户报告紧急情况或请求援助。由于手机从汽车电池接受电源,且天线不需安装到小型的手机上,使系统连接能力超出了手机连接的能力。


因为M2M 无线网络代表了几个新兴技术间的融合,如扩频无线、嵌入式处理器、网络路由协议,以及很多其它市场大肆宣传的新技术。这种新技术宣称利用无线网络将实现灯开关与冰箱间的通信。这种思路是推动M2M发展的一种极富想象力的结果。Internet 先驱Tim Berners-Lee 曾经表明:“机器能够分析所有Web的数据,内容、链接、及人与计算机间的事务处理。可以实现此目标的“Semantic Web”(语义网)还未出现。但当其真正出现时,通过机器间对话就可处理常见的交易、必须做的繁琐事、以及我们的日常生活,人只要提供灵感和判断就可以了”(参考文献1)。这番评论的范围和观念巩固了 Berners-Lee的作为天才和卓越的思想家地位。问题是无人知道,什么是无线M2M 网络杀手级应用?尽管Berners-Lee 和其它人并不担心这个问题,但在无线连接机器的构想与工程实现此目标之间还有很多未解决的问题。

未来主义者及权威人士构想了一个M2M 网络,其中机器连接到Internet上。这种情况的问题是它要求机器中的嵌入式系统不但要有无线模块,而且要有针对TCP/IP (传输控制协议/Internet 协议)的协议堆栈和硬件。这种情况会造成这样的问题:如何分配IP 地址给所有这些设备,然后提供DNS(域名服务器)或其它方式来寻找使用这些设备。Panasonic 把具有hard-IP 地址的网络摄像头构建到企业运营的服务器。如果你购买了摄像头,就可以通过浏览器导航进入该网址,服务器可在摄像头和你的浏览器之间建立路由。这种方法充其量是有点笨拙。某些研究人员提出一种方案,即随机地分配IP 地址到各部分设备中(参考文献1)。他们指出IPv6 (IP 版本 6) 提供了2128 个地址,足够在每平方米地面上容纳6.6×1023 个设备。

较大片的无线M2M 网络作为子网存在于Web中,通常没有路由或IP。要从Web 获取数据到子网中,需要安装路由器和网关。所有这些现实情况都有悖于每个无线 M2M网络节点价格低于2美元、都能连接到Web的宣传。凭自身能力而完善的计算机路由器和网关会抵消任何网络的低成本优势。仅在几年前,人们还认为蓝牙会消除小轿车、桌面及工作台上的所有线缆。但实际上,蓝牙作为一种无线耳机支持技术,还是有两英尺尾巴——从你的腰带连到耳朵上。无线网络的现状包括高成本的编写与标准化高级协议,以使这些设备寻找并连接其它设备。当工程师们达到该目标后,他们认识到这些设备需要安全性,否则任何人都可窥探你的PDA 或手机。任何特别的或自我安排的无线M2M 系统都必须处理好这些问题。这些令人好奇的实验室新鲜玩意,对于只出于纯粹的破坏欲而破坏你的数据的青少年并没有多大用处。

让我们来看看M2M无线网络的好处与不利之处。M2M无线设备现在不是使用原有的手机网络就是使用新兴的ISM网络,后者使用800MHz、900MHz、及2.4GHz 频段。在不远的将来,运行在10GHz到20GHz的批准频段及未批准的2GHz到11GHz 频段的WiMax 网络将会是主要的趋势。手机企业和计算机巨头,如 Intel,也在关注着50MHz 到200MHz的模拟TV 带宽。这些频段的低频允许设备以较低的功耗达到较长信号传播距离,而且无论风雨,都不会影响其接收效果。尽管WiMax正在增长,但毕竟还只是未来的技术。如今两种占优势的无线技术是 手机与IEEE 802-style ISM技术。

手机网络有传播距离长和部署广泛的优势。许多现场应用工程师很难找到无线IEEE 802 热点,但公司给他们Verizon 和AT&T PC 卡后,就可以通过手机系统连接到Web。他们就可以从美国的任何地点检查并发送电子邮件。使用手机网络的M2M 网络也会有相同的优势。结果,移动和远程应用,如OnStar 和长途运输车队,通过将一个GPS (全球定位系统) 接收机添加到无线模块上来监测车辆位置,采用了基于峰窝的连接。此特性帮助车队主人分析路线,并有监测能力来检查驾驶人员的行为。同样,一个桥接结构中可使用传感器来监测应力、流量及降级等。这些传感器可连接到维护与公路控制计算机系统,当出现地震或事故,如结构损坏时,提供紧急情况警告。这些基于手机的系统成本高、功耗大。无线模块的成本由于消费者手机的普及而迅速下降。但使用网络的成本仍然很高,原因是由于电讯公司掠夺性的定价模式:按连接或分钟收费,而M2M 系统一般只需发送几个字节的数据。



另一种IEEE802类型的M2M网络,在欧洲以类似ISM 的800MHz频率工作,在美国以900MHz工作,在全球以2.4GHz工作 (图2)。另外,专有网络可在其它频段工作,如遥控车库门和遥控车锁使用的434MHz,进行可靠通信的医疗频段等。这类网络中我们最熟悉的标准为ZigBee。它使用标准化的协议,允许以较小的电池驱动设备进行通信。一些ZigBee支持者宣称电池采用10 年寿命的技术,但5年或2年的寿命更为实际。这些网络最大的问题是干扰与电池寿命问题。由于2.4GHz 为未批准频段,对在同一区域内可使用多少发射机并没有限制(图3)。还有些ZigBee支持者宣称几种802型的网络可以共存,但网络的成功也是他们的失败。如果世界充满了2.4GHz的发射机,有效的通信半径就会缩短到几英尺,甚至这种技术会严重影响到数据传输速率。EDN高级技术编辑Brian Dipert在测试无线话筒系统时指出了这种现象(参考文献2)。使用无线话筒会造成802.11无线Wi-Fi (无线高保真) LAN 停止工作或仅以50% 数据速率实现连接。


尽管担心干扰问题,某些成功的M2M 应用还是采用了这些ISM 无线协议。Verifone的销售终端 (POS)使用Connect One的iChip IP-controller 芯片,以便无线LAN可连接到信用卡公司来对购买行为进行授权。好处是加快了交易速度。嵌入式调制解调器需要很多秒的时间才能拨通一个电话号码、建立通信、建立加密,并实现对一个16 位的信用卡号码授权。无线系统可以更快地执行这些任务,不需要将电话线路或以太网连接到收银机。因为它们使用网络连接,所有大型商场中的收银机可同时访问信用卡授权服务器,而不必等待空闲的线路。这种技术非常适合于需要快速支付的场合,如速冻食品柜台及地铁售票亭。在这些情况下,收银机都有IP地址并连接到Internet。

将设备直接连接到Internet 并非总是必须的。ZigBee的支持者正在将数以十计、百计甚至上千个传感器连接到一个中央节点或协调器上。如果需要从Internet发送或接收数据,可以安装一个网关。尽管ZigBee 网不是常规的子网,并使用分组路由及其它复杂技术来将数据在同类设备之间路由或路由到中央协调器。传统的ZigBee 应用为HVAC (供暖/通风/空调)和建筑物中灯光控制,以及工厂或现场的数据采集。一个巧妙的应用是将ZigBee 节点嵌入到道路中的反射凸点上(图4)。这些节点可以实时地监测并报告停车场地实时利用情况,允许采集数据,判断是否有人向汽车停放收费机交钱(参考文献3)。尽管某些工业参与者将RFID 方案纳入无线M2M 网络,其它一些人还是认为该项技术为一个特殊的市场。



要更好地理解无线M2M 网络的特性与缺点,切记模拟设计原则应用在两个关键领域:网络的实际无线通信与高级系统设计。在这方面,不能迷信所有营销人员的宣传,而期望你的系统会达到那种水平。高速CMOS 的发展使 2 美元的无线电可行,但那是ZigBee类型的 802.15.4 无线电,而不是能使用手机网络的无线电。而且,如果想要在Internet上使用无线设备,必须购买足够容纳TCP/IP 堆栈的处理器,还要提供一种分配与路由IP 地址的方法。厂商们也很关心如何延长电池寿命。无线设备在网状网络中将数据从终端设备传送到网状网络的周边。该功能会影响更靠近网状网络中心设备的电池寿命。另外,特殊的网络必须要使用大量的资源来确定及集成新的设备到网络中。如果设备不能在已有的网状网络路径中路由,必须要进行协调并建立一个新的路径。这些工作用尽了电池资源。虽然情况不妙,但电池使用不需要在整个网络内保 持一致,即某些设备需要比其它设备更快地更换电池。或者用户会放弃部分放电的电池,因为系统维护过程会决定,按最严重的设备电池消耗在定期的间隔内更换网状网络中所有的电池。

而且ZigBee 网络设备在全球频段的2.4GHz上工作,能以240kbps的速率发送数据,那些使用915MHz 的美国ISM频段速率为40kbps,使用868MHz的欧洲ISM频段速率只达到20kbps。因此,尽管你想要将设备移出拥挤的2.4GHz频段来工作,但较慢的数据速率会以更短的电池寿命使你花费更大。

手机无线网络会给你“无处不在”的连接,但不能提供“永远实时连接”。一个可靠的连接也许会使用专有网络和频率,这意味着就不能依靠低成本的 ZigBee设计协议。智能的自身修复设备构成了也许不是最昂贵的特殊网络。干扰、网络拓扑与设备协议等因素都会对电池寿命有不良影响。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top