微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 光纤放大器工作原理及其在无线光通信的应用

光纤放大器工作原理及其在无线光通信的应用

时间:10-29 来源:互联网 点击:
1 引 言

无线光通信是以激光作为信息载体,是一种不需要任何有线信道作为传输媒介的通信方式。与微波通信相比,无线光通信所使用的激光频率高,方向性强(保密性好),可用的频谱宽,无需申请频率使用许可;与光纤通信相比,无线光通信造价低,施工简便、迅速。它结合了光纤通信和微波通信的优势,已成为一种新兴的宽带无线接人方式,受到了人们的广泛关注。但是,恶劣的天气情况,会对无线光通信系统的传播信号产生衰耗作用。空气中的散射粒子,会使光线在空问、时间和角度上产生不同程度的偏差。大气中的粒子还可能吸收激光的能量,使信号的功率衰减,在无线光通信系统中光纤通信系统低损耗的传播路径已不复存在。大气环境多变的客观性无法改变,要获得更好更快的传输效果,对在大气信道传输的光信号就提出了更高的要求,一般地,采用大功率的光信号可以得到更好的传输效果。随着光纤放大器(EDFA)的迅速发展,稳定可靠的大功率光源将在各种应用中满足无线光通信的要求。

2 EDFA的原理及结构

掺铒光纤放大器(EDFA)具有增益高、噪声低、频带宽、输出功率高、连接损耗低和偏振不敏感等优点,直接对光信号进行放大,无需转换成电信号,能够保证光信号在最小失真情况下得到稳定的功率放大。

2.1 EDFA的原理

EDFA的泵浦过程需要使用三能级系统,如图1所示。


在掺铒光纤中注入足够强的泵浦光,就可以将大部分处于基态的Er3+离子抽运到激发态,处于激发态的Er3+离子又迅速无辐射地转移到亚稳态。由于 Er3+离子在亚稳态能级上寿命较长,因此很容易在亚稳态与基态之间形成粒子数反转。当信号光子通过掺铒光纤时,与处于亚稳态的Er3+离子相互作用发生受激辐射效应,产生大量与自身完全相同的光子,这时通过掺铒光纤传输的信号光子迅速增多,产生信号放大作用。Er3+离子处于亚稳态时,除了发生受激辐射和受激吸收以外,还要产生自发辐射(ASE),它造成EDFA的噪声。

2.2 EDFA的结构

典型的EDFA结构主要由掺铒光纤(EDF)、泵浦光源、耦合器、隔离器等组成。

掺铒光纤是EDFA的核心部件。它以石英光纤作为基质,在纤芯中掺人固体激光工作物质铒离子,在几米至几十米的掺铒光纤内,光与物质相互作用而被放大、增强。光隔离器的作用是抑制光反射,以确保放大器工作稳定,它必须是插入损耗低,与偏振无关,隔离度优于40 dB。

图2为单向泵浦方式结构,此外还有反向泵浦,双向泵浦方式结构。


2.3 EDFA的特性及性能指标

增益特性表示了放大器的放大能力,其定义为输出功率与输入功率之比:



式中:Pout,Pin分别表示放大器输出端与输入端的连续信号功率。增益系数是指从泵浦光源输入1 mW泵浦光功率通过光纤放大器所获得的增益,其单位为dB/mW:



式中:g0是由泵浦强度定的小信号增益系数,由于增益饱和现象,随着信号功率的增加,增益系数下降;Is,Ps分别为饱和光强和饱和光功率,是表明增益物质特性的量,与掺杂系数、荧光时间和跃迁截面有关。

增益和增益系数的区别在于:增益主要是针对输入信号而言的,而增益系数主要是针对输入泵浦光而言的。另外,增益还与泵浦条件(包括泵浦功率和泵浦波长)有关,目前采用的主要泵浦波长是980 nm和1 480 nm。由于各处的增益系数是不同的,而增益须在整个光纤上积分得到,故此特性可用以通过选择光纤长度得到较为平坦的增益谱。

2.4 EDFA的带宽

增益频谱带宽指信号光能获得一定增益放大的波长区域。实际上的EDFA的增益频率变化关系比理论的复杂得多,它还与基质光纤及其掺杂有关。在EDFA的增益谱宽已达到上百纳米.而且增益谱较平坦。ED-FA的增益频谱范围在1 525~1 565 nm之间。

3 EDFA的级联应用

3.1 EDFA的级联结构

EDFA对光信号功率的放大,特别在无线光通信大功率(瓦级)应用中,常常采用级联的方式,比如两级或者三级放大。之所以采用级联的方式,是因为在 EDFA的掺铒光纤(EDF)中插入一个光隔离器,构成带光隔离器的两段级联EDFA,由于光隔离器有效地抑制了第二段:EDF的反向自发辐射 (ASE),使其不能进入第一段EDF,减少了泵浦功率在反向ASE上的消耗,使泵浦光子更有效地转换成信号光能量,从而可以明显改善EDFA的增益、噪声系数和输出功率等特性。本文采用丽级级联放大,将1~2 mW的1 550 nm光信号,经EDFA放大到1 W左右。级联结构如图3所示。


光信号由LD激光器产生,是已调制的信号,第一级放大采用单包层掺铒光纤放大器,980 nm单模半导体激光器作为泵浦源,将光功率放大到50 mW附近。第一级采用单模半导体激光器泵浦,先将光信号稳定可靠的放大到一定功率,保证了整个光信号的完整,又为下一级光放大提供了较高的光功率基础。第二级采用双包层光纤放大器,多模半导体激光器泵浦源将光功率放大到1 W左右。双包层光纤放大器纤芯比单包层纤芯大,泵浦功率可以有效地耦台到纤芯中,使第二级光信号的输出功率可达到瓦级。  

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top