基于WPAN的脉搏血氧饱和度检测仪的研究与实现
时间:09-27
来源:互联网
点击:
3.1 检测仪主站的硬件设计
检测仪主站的硬件结构如图4所示。下面分别介绍各主要部分的组成及其功能。
(1)CPU部分的功能和实现
CPU部分完成主站各组成部分的控制、协调和数据的加工。具体功能:通过系统总线与存储器相连,完成相关数据的加工、处理和存储;通过LCD接口与彩色液晶显示器相连,实现信息的显示,以实现人机交互;通过触摸屏接口与触摸屏相连,实现控制命令的输入;通过总线接口与以太网控制器相连,可将检测仪接入后台支持网络,实现系统信息的集中化管理和与后台管理系统的融合;通过SPI接口和状态指示接口实现对RF收发器的配置和检测,并完成发射和接收的数据交换,实现与检测仪移动终端的通信;通过电源和外围电路,实现对系统的供电。
(2)检测仪主站存储器的功能和实现
存储器的功能是存储系统程序和应用程序,存储移动采集终端采集的历史数据并提供程序运行的存储器空间。
(3)快速以太网接口的功能和实现
为实现与后台管理系统的协作,检测仪主站提供一个快速以太网接口。通过该接口,可方便主站与医院的病历管理系统、计费系统、或其他应用单位的后台业务支持系统的连接。
(4)人机交互界面的设计
一些专家指出:对于用户,人机界面就是系统本身。因此人机界面在系统中占有重要地位。本系统中,人机界面的硬件部分由彩屏LCD显示器和触摸屏组成,触摸屏用于输入各种控制/查询命令和各种初始数据,LCD显示器用于返回各种命令的操作结果和显示各种监测数据或监测曲线。显示器采用SHARP公司的LQ035Q7DB02实现,该屏为具有配套触摸屏的彩色LCD。
(5)WPAN接口
WPAN接口实现检测仪移动终端与检测仪主站的通信,与检测仪移动终端的RF收发器部分基本相同。
3.2 检测仪主站的软件实现
检测仪主站的软件是基于ARMLinux开发的。自20世纪80年代末以来,陆续出现了一些嵌入式操作系统,但其高昂的价格令人望而却步,且源代码的封闭性也大大限制了开发者的积极性。因此,结合国内外具体情况,选择了ARMLinux操作系统作为开发平台。检测仪主站的软件结构如图5所示。
ARMLinux内核主要由5个子系统组成:进程调度、内存管理、虚拟文件系统、网络接口和进程间通信。进程调度控制进程对CPU的访问;内存管理允许多个进程安全共享主内存区域;虚拟文件系统隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口;网络接口提供了对各种网络标准的存取和各种网络硬件的支持;进程间通讯(IPC)支持进程间各种通信机制。
显示处理模块和触摸屏处理模块共同完成人机交互。显示处理模块完成采集数据的图形或字符显示,并根据用户操作显示各级菜单;触摸屏处理模块与显示处理模块配合完成各种控制或命令信息的输入。
嵌入式数据库实现历史数据的管理、查询和维护等操作。
4 实现结果
基于WPAN的血氧饱和度检测仪的原型机已开发成功并通过测试。
测试结果如下:各参数的测量精度与所选择的血氧饱和度监测模块完全相同;一个检测仪主站最多可同时与64个检测仪移动采集终端通信,并保证传输和显示的正确性和实时性;无线传输速率为250kb/s;无线传输距离可达75m(根据使用条件的变化会有所改变)。
测试结果表明,检测仪完全达到了预期的设计指标,具有广阔的市场前景。
5 结论
基于WPAN的血氧饱和度检测仪的研制,大大扩展了设备的适用范围,在设备的实用性、方便性、可管理性及适用范围等方面有了极大提高;由于一个主站可连接多个移动采集终端,大大降低了使用成本。
检测仪主站的硬件结构如图4所示。下面分别介绍各主要部分的组成及其功能。

(1)CPU部分的功能和实现
CPU部分完成主站各组成部分的控制、协调和数据的加工。具体功能:通过系统总线与存储器相连,完成相关数据的加工、处理和存储;通过LCD接口与彩色液晶显示器相连,实现信息的显示,以实现人机交互;通过触摸屏接口与触摸屏相连,实现控制命令的输入;通过总线接口与以太网控制器相连,可将检测仪接入后台支持网络,实现系统信息的集中化管理和与后台管理系统的融合;通过SPI接口和状态指示接口实现对RF收发器的配置和检测,并完成发射和接收的数据交换,实现与检测仪移动终端的通信;通过电源和外围电路,实现对系统的供电。
(2)检测仪主站存储器的功能和实现
存储器的功能是存储系统程序和应用程序,存储移动采集终端采集的历史数据并提供程序运行的存储器空间。
(3)快速以太网接口的功能和实现
为实现与后台管理系统的协作,检测仪主站提供一个快速以太网接口。通过该接口,可方便主站与医院的病历管理系统、计费系统、或其他应用单位的后台业务支持系统的连接。
(4)人机交互界面的设计
一些专家指出:对于用户,人机界面就是系统本身。因此人机界面在系统中占有重要地位。本系统中,人机界面的硬件部分由彩屏LCD显示器和触摸屏组成,触摸屏用于输入各种控制/查询命令和各种初始数据,LCD显示器用于返回各种命令的操作结果和显示各种监测数据或监测曲线。显示器采用SHARP公司的LQ035Q7DB02实现,该屏为具有配套触摸屏的彩色LCD。
(5)WPAN接口
WPAN接口实现检测仪移动终端与检测仪主站的通信,与检测仪移动终端的RF收发器部分基本相同。
3.2 检测仪主站的软件实现
检测仪主站的软件是基于ARMLinux开发的。自20世纪80年代末以来,陆续出现了一些嵌入式操作系统,但其高昂的价格令人望而却步,且源代码的封闭性也大大限制了开发者的积极性。因此,结合国内外具体情况,选择了ARMLinux操作系统作为开发平台。检测仪主站的软件结构如图5所示。

ARMLinux内核主要由5个子系统组成:进程调度、内存管理、虚拟文件系统、网络接口和进程间通信。进程调度控制进程对CPU的访问;内存管理允许多个进程安全共享主内存区域;虚拟文件系统隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口;网络接口提供了对各种网络标准的存取和各种网络硬件的支持;进程间通讯(IPC)支持进程间各种通信机制。
显示处理模块和触摸屏处理模块共同完成人机交互。显示处理模块完成采集数据的图形或字符显示,并根据用户操作显示各级菜单;触摸屏处理模块与显示处理模块配合完成各种控制或命令信息的输入。
嵌入式数据库实现历史数据的管理、查询和维护等操作。
4 实现结果
基于WPAN的血氧饱和度检测仪的原型机已开发成功并通过测试。
测试结果如下:各参数的测量精度与所选择的血氧饱和度监测模块完全相同;一个检测仪主站最多可同时与64个检测仪移动采集终端通信,并保证传输和显示的正确性和实时性;无线传输速率为250kb/s;无线传输距离可达75m(根据使用条件的变化会有所改变)。
测试结果表明,检测仪完全达到了预期的设计指标,具有广阔的市场前景。
5 结论
基于WPAN的血氧饱和度检测仪的研制,大大扩展了设备的适用范围,在设备的实用性、方便性、可管理性及适用范围等方面有了极大提高;由于一个主站可连接多个移动采集终端,大大降低了使用成本。
ZigBee MCU 收发器 电压 显示器 触摸屏 总线 LCD 电路 ARM Linux 嵌入式 相关文章:
- 四种短距离无线监控解决方案的性能对比(09-16)
- 基于MCF5213及Zigbee无线(09-12)
- 面向低速率应用的全球标准ZigBee (上)(09-27)
- 面向低速率应用的全球标准ZigBee (下)(09-27)
- Wibree:一个可供选择的新无线联网技术(11-07)
- 基于ZigBee技术的家居智能无线网络系统(01-11)
