GPS在PCI同步数据采集卡中的应用
时间:09-18
来源:互联网
点击:
1 引言
国家电力公司陆延昌副总经理在第26届中国电网调度运行全闭幕式上的讲话中指出了今后一段时期内的电网技术的发展上应重点研究和解决的问题,其中,在电网安全、稳定、经济运动领域,互联电力系统实时功角测量受到越来越的关注。特别是在以监控中目的的电力调度自动化系统中,如何快速、准确地采集处理各种电气参数显得尤为重要。而在实现自动化的过程中,首要环节就是数据采集。为此我们研究开发了电力系统功角广域测控系统,其中,用C8051F021型单片机实现的数据采集卡不仅可以准确、高效、实时地进行AD数据采集并通过双口RAM和PCI接口与上位机交换数据,还可以通过与GPS接收通信接收秒脉冲实现采集数据异地同步。
2 功角及其测量
2.1 发电机的功角
发电机通过变压器、输出线路与无限大容量系统母线联接组成的输电系统如图1所示。
若图中G为隐极式发电机,则发电机输出的有功功率为
上式也称作发电机的功率特性。式中Xd∑=Xd+XTL,其中Xd为发电机d轴等值电抗,XTL为发电机与无限大系统间的联系电抗,Eq为发电机的空载电势,V、I为系统参考母线电压和电流,ψ为母线电压与电流间的相位差。当发电机的电势Eq和受端电压V均恒定时,传输功率P是角度δ的正弦函数,角度δ为Eq与V之间的相位差角。因功率P的大小与δ角度切相关,因此称δ为“功率角”或“功角”。
2.2 功角的测量
对于隐极发电机和凸极发电机,其电压和电流矢量图如图2(a)、(b)所示,由矢量图可知功角δ的计算公式为
式中,Xq∑=Xq+XTL,其中Xq为发机横轴电抗。对于确定的系统,Xd∑和Xq∑均为常数,因此在用计算机测量时,只需测出系统母线处的电压V、电流I及功率因数角,便可由(2)式和(3)式算出功角。此外,描述电力系统受到大干扰后,的机电暂态过程是一组非线性微分方程式,不能进行线性化,所以一般采用数值积分法(如欧拉法、龙格-库塔法、隐式积分法)的时域分析方法,将计算结果是绘制成运行参数(如功角)对时间的曲线,用以判别电力系统暂态稳定性。上述的计算及曲线缓制都是基于电力系统交流信号的精确采集才能实现的。
本数据采集卡就是通过交流采样将3相电压、电流分别经6路通道采集到计算机进行处理,即对于交流信号不经过电量变换器,直接将互感器(PT/CT)二次测的电压电流再经一级高精度PT、CT转换为计算机可测量的小信号(本数据采集卡为-2.5V~+2.5V),然后经A/D变换后送入计算机进行处理,计算出电压电流有效值及功率因数角等电气参数并进而得到功角值及其随时间变化的情况,提供给电力调度监控中心进行电力系统稳定性的监控。
3 采集卡硬件设计
本采集卡主要由C8051F021、A/D滤波采样保持电路、双口RAM、GPS接口、PCI接口等部分组成。从现场PT、CT过来的电压及电流经隔离互感器隔离变换后输入数据采集卡,然后经过二阶滤波器至A/D转换器前置通道。单片机通过GPS接口和双口RAM取得精确的秒脉冲和相应时间(年、月、日、时、分、秒)并实现对信号的同步采集,转换后得到的数字量再由另外一个双口RAM和PCI接口送往上位机进行处理。系统的结构框图如图3所示。
本采集卡采用Cygnal公司的C8051F021型单片机,该系列单片机是完全集成的混合信号系统级芯片(System On Chip),具有与MCS-51指令集完全兼容的高速CIP-51内核;峰值速度可达25MI/S;在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎所有模拟和数字外设及其他功能部件(包括可编程增益放大器PGA、ADC、DAC、电压比较器、电压基准、UART、定时器、可编程计数器/定时器阵列PCA等)。其指令周期为83ns(3.3V,12MHz);具有大容量的可在系统(ISP)和在应用(IAP)编程的FLASH存储器;支持符合IEEE 1194.1标准的JTAG调试和边界扫描,可进行非侵入式、全速的在系统调试。由于C8051F型单片机与其他8位单片机和比具有更为优异的性能,所以一面世就成为很多测控系统设计的首选机型。
ADC转换器采用片内12位、100ks/s的ADC,每次转换仅需10μs,完全满足系统对实时性和快速性的要求。F021型单片机ADC有8个外部输入,基准电压可由内部或外部提供(2.5V),可编程为单端输入或差分输入且带可编程放大器增益,本采集卡使用6路单端输入以完成对3相电压、电流的同步采集。因为ADC采用单端输入时只能对0~2.5V的信号进行AD转换,所以对由PT、CT送来的-2.5V~+2.5V正弦交流信号需在A/D转换的前置通道加一直流偏置电压2.5V,使得输入信号幅值为0V~5V,该信号现经片内可编程增益入大器衰减为0V~2.5V,进而完成A/D转换。采集时通过采集程序发出采样保持命令使采样/保持器保持采集瞬间的值,采集的瞬时信号经过模拟通道开关选择进入衰减电路,再经过A/D转换器转换成12位并行数据输出到双口RAM供上位机读入处理。
双口RAM采用的是32k、8位高速IDT7007S,单片机和上位机可分别从双口RAM两边同时进行读写操作(但不可同时对同一地址单元写数据),且该双口RAM的存取操作时间最长仅需55ns,因此,通过双口RAM极大地提高了单片机与上位机交换数据的速度,从而为该数据采集卡在电力系统测控领域中的应用提供了保证。
PCI接口主要由PCI接口CH365完成。CH365是一个连接PCI总线的通用接口电路,支持I/O端口映射、存储器映射、扩展ROM及中断。本采集卡主要使用CH365的存储器映射功能,将32位高速PCI总线转换为8位数据、16位地址主动并行接口。CH365可以通过双端口存储器与外部的单片机或者DSP交换数据,然后将数据传送到上位机做进一步处理。如果将CH365的读写选通脉冲的宽度设定为30ns,并且使用双字为单位进行数据交换,则数据传输的实测速度可以达到每秒7M字节。PCI总线与其他主流总线相比,速度更快、实时性更好、可控性更佳,所以CH365特别适用于高速实时I/O控制卡、通讯接口卡和数据采集卡等。
除了上述有关数据采集处理的速度、精度、实时传送等方面的考虑外,本采集卡还考虑了各路依赖的异地同步采集,在设计中采用了GARMIN公司的GPS接收板(GPS Receiver Board)GPS15L,通过卫星精密授时功能,由卫星提供的精确秒脉冲实现异地同步采集。该接收板最少接收11颗卫星的信号,专用集成电路和处理软件能从接收到的信息中提取并输出二种时间信号:一是秒脉冲1PPS,其与协调世界时UTC(国际标准时间)的同步误差不超过1μs;二是经串行口输出的与1PPS脉冲前沿对应的标准时间码(年、月、日、时、分、秒),即1PPS的“时间标记”。电力系统内部的各个送端和受端的分布广泛分散,基顺各端安装一台GPS接收机,则GPS的全球性和高精度就能保证各地时间信号与UTC的相对误差都不超过1μs。这种全球范围内的高精度时间同步在电力系统检测和测量中有极高的利用价值。本数据采集卡就是通过GPS接收板提供的秒脉冲和其时间标记来进行异地同步数据采集的,实践证明其效果是理想的。
国家电力公司陆延昌副总经理在第26届中国电网调度运行全闭幕式上的讲话中指出了今后一段时期内的电网技术的发展上应重点研究和解决的问题,其中,在电网安全、稳定、经济运动领域,互联电力系统实时功角测量受到越来越的关注。特别是在以监控中目的的电力调度自动化系统中,如何快速、准确地采集处理各种电气参数显得尤为重要。而在实现自动化的过程中,首要环节就是数据采集。为此我们研究开发了电力系统功角广域测控系统,其中,用C8051F021型单片机实现的数据采集卡不仅可以准确、高效、实时地进行AD数据采集并通过双口RAM和PCI接口与上位机交换数据,还可以通过与GPS接收通信接收秒脉冲实现采集数据异地同步。
2 功角及其测量
2.1 发电机的功角
发电机通过变压器、输出线路与无限大容量系统母线联接组成的输电系统如图1所示。
若图中G为隐极式发电机,则发电机输出的有功功率为
上式也称作发电机的功率特性。式中Xd∑=Xd+XTL,其中Xd为发电机d轴等值电抗,XTL为发电机与无限大系统间的联系电抗,Eq为发电机的空载电势,V、I为系统参考母线电压和电流,ψ为母线电压与电流间的相位差。当发电机的电势Eq和受端电压V均恒定时,传输功率P是角度δ的正弦函数,角度δ为Eq与V之间的相位差角。因功率P的大小与δ角度切相关,因此称δ为“功率角”或“功角”。
2.2 功角的测量
对于隐极发电机和凸极发电机,其电压和电流矢量图如图2(a)、(b)所示,由矢量图可知功角δ的计算公式为
式中,Xq∑=Xq+XTL,其中Xq为发机横轴电抗。对于确定的系统,Xd∑和Xq∑均为常数,因此在用计算机测量时,只需测出系统母线处的电压V、电流I及功率因数角,便可由(2)式和(3)式算出功角。此外,描述电力系统受到大干扰后,的机电暂态过程是一组非线性微分方程式,不能进行线性化,所以一般采用数值积分法(如欧拉法、龙格-库塔法、隐式积分法)的时域分析方法,将计算结果是绘制成运行参数(如功角)对时间的曲线,用以判别电力系统暂态稳定性。上述的计算及曲线缓制都是基于电力系统交流信号的精确采集才能实现的。
本数据采集卡就是通过交流采样将3相电压、电流分别经6路通道采集到计算机进行处理,即对于交流信号不经过电量变换器,直接将互感器(PT/CT)二次测的电压电流再经一级高精度PT、CT转换为计算机可测量的小信号(本数据采集卡为-2.5V~+2.5V),然后经A/D变换后送入计算机进行处理,计算出电压电流有效值及功率因数角等电气参数并进而得到功角值及其随时间变化的情况,提供给电力调度监控中心进行电力系统稳定性的监控。
3 采集卡硬件设计
本采集卡主要由C8051F021、A/D滤波采样保持电路、双口RAM、GPS接口、PCI接口等部分组成。从现场PT、CT过来的电压及电流经隔离互感器隔离变换后输入数据采集卡,然后经过二阶滤波器至A/D转换器前置通道。单片机通过GPS接口和双口RAM取得精确的秒脉冲和相应时间(年、月、日、时、分、秒)并实现对信号的同步采集,转换后得到的数字量再由另外一个双口RAM和PCI接口送往上位机进行处理。系统的结构框图如图3所示。
本采集卡采用Cygnal公司的C8051F021型单片机,该系列单片机是完全集成的混合信号系统级芯片(System On Chip),具有与MCS-51指令集完全兼容的高速CIP-51内核;峰值速度可达25MI/S;在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎所有模拟和数字外设及其他功能部件(包括可编程增益放大器PGA、ADC、DAC、电压比较器、电压基准、UART、定时器、可编程计数器/定时器阵列PCA等)。其指令周期为83ns(3.3V,12MHz);具有大容量的可在系统(ISP)和在应用(IAP)编程的FLASH存储器;支持符合IEEE 1194.1标准的JTAG调试和边界扫描,可进行非侵入式、全速的在系统调试。由于C8051F型单片机与其他8位单片机和比具有更为优异的性能,所以一面世就成为很多测控系统设计的首选机型。
ADC转换器采用片内12位、100ks/s的ADC,每次转换仅需10μs,完全满足系统对实时性和快速性的要求。F021型单片机ADC有8个外部输入,基准电压可由内部或外部提供(2.5V),可编程为单端输入或差分输入且带可编程放大器增益,本采集卡使用6路单端输入以完成对3相电压、电流的同步采集。因为ADC采用单端输入时只能对0~2.5V的信号进行AD转换,所以对由PT、CT送来的-2.5V~+2.5V正弦交流信号需在A/D转换的前置通道加一直流偏置电压2.5V,使得输入信号幅值为0V~5V,该信号现经片内可编程增益入大器衰减为0V~2.5V,进而完成A/D转换。采集时通过采集程序发出采样保持命令使采样/保持器保持采集瞬间的值,采集的瞬时信号经过模拟通道开关选择进入衰减电路,再经过A/D转换器转换成12位并行数据输出到双口RAM供上位机读入处理。
双口RAM采用的是32k、8位高速IDT7007S,单片机和上位机可分别从双口RAM两边同时进行读写操作(但不可同时对同一地址单元写数据),且该双口RAM的存取操作时间最长仅需55ns,因此,通过双口RAM极大地提高了单片机与上位机交换数据的速度,从而为该数据采集卡在电力系统测控领域中的应用提供了保证。
PCI接口主要由PCI接口CH365完成。CH365是一个连接PCI总线的通用接口电路,支持I/O端口映射、存储器映射、扩展ROM及中断。本采集卡主要使用CH365的存储器映射功能,将32位高速PCI总线转换为8位数据、16位地址主动并行接口。CH365可以通过双端口存储器与外部的单片机或者DSP交换数据,然后将数据传送到上位机做进一步处理。如果将CH365的读写选通脉冲的宽度设定为30ns,并且使用双字为单位进行数据交换,则数据传输的实测速度可以达到每秒7M字节。PCI总线与其他主流总线相比,速度更快、实时性更好、可控性更佳,所以CH365特别适用于高速实时I/O控制卡、通讯接口卡和数据采集卡等。
除了上述有关数据采集处理的速度、精度、实时传送等方面的考虑外,本采集卡还考虑了各路依赖的异地同步采集,在设计中采用了GARMIN公司的GPS接收板(GPS Receiver Board)GPS15L,通过卫星精密授时功能,由卫星提供的精确秒脉冲实现异地同步采集。该接收板最少接收11颗卫星的信号,专用集成电路和处理软件能从接收到的信息中提取并输出二种时间信号:一是秒脉冲1PPS,其与协调世界时UTC(国际标准时间)的同步误差不超过1μs;二是经串行口输出的与1PPS脉冲前沿对应的标准时间码(年、月、日、时、分、秒),即1PPS的“时间标记”。电力系统内部的各个送端和受端的分布广泛分散,基顺各端安装一台GPS接收机,则GPS的全球性和高精度就能保证各地时间信号与UTC的相对误差都不超过1μs。这种全球范围内的高精度时间同步在电力系统检测和测量中有极高的利用价值。本数据采集卡就是通过GPS接收板提供的秒脉冲和其时间标记来进行异地同步数据采集的,实践证明其效果是理想的。
自动化 单片机 GPS 变压器 电压 电流 电路 滤波器 放大器 ADC DAC 比较器 IDT 总线 DSP ARM 集成电路 相关文章:
- 中压电力线通信技术(01-07)
- 北京华深校园办公自动化系统方案(02-14)
- 基于DSP技术的变电站综合自动化系统简介(11-10)
- 数据中心的网络虚拟化和自动化(01-31)
- OFDM调制技术的配电自动化通信系统研究(02-17)
- 基于ITIL的云计算实施方案 (02-08)