微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > GPS时钟在数字同步网中的应用

GPS时钟在数字同步网中的应用

时间:06-30 来源:互联网 点击:


在网络正常工作状态下,GPS时钟具有与GPS主钟相同的频率准确度;由于在某些特殊情况下GPS时钟信号会暂时消失,所以基于GPS的时钟模块一般需要另一个外部时钟作为后备输入,预留有外接时钟的时基和频标信号(如GLONASS、中国双星、铷原子钟等)接口。另外,GPS时钟其频率准确度还具有自身保持性能。

GPS时钟频率模块提供所需的各种时频的信号,并输出定位时间信息、GPS接收机是否工作正常、输出的时间信号是否有效、时钟和频率处理模块激活状态、异常告警等等。图1是GPS时钟模块的原理图


4 现状与展望

根据《中华人民共和国通信行业标准数字同步网工程设计规范》,数字同步网按分布式多个基准时钟的组网建设,以基准钟的同步范围划分同步区,每个同步区内采用主从同步方法。区域基准钟(LPR)的主用基准为GPS,备用基准来自全网基准钟(PRC)。LPR平时以接收GPS信号为主用信号,以接收PRC信号为备用。GPS不可用时,LPR同步于PRC。

我国现有数字同步网的网络结构如图2所示。


由于GPS全球卫星定位系统归美国政府所有,受控于美国国防部,对世界各地的用户未有任何政府承诺,而且用户只支付了GPS接收机的费用,并未支付GPS系统的使用费用,因此这种方法自主性差,也带来一些不稳定因素,例如故意降低GPS精度;关闭GPS在某个地区的发送信号;增加随机扰码;周围环境对GPS无线信号的干扰等。

可以充分利用但不能完全依靠,因此还需要有由铯钟组成的基准钟PRC,以他作为全网同步的根本保证。还有GPS在某些特殊情况下信号暂时消失,或者GPS不正常工作,这些可以通过监控GPS数据来发觉,这些情况如果不做处理带来的结果是基准钟将降质为二级时钟,所以此时要控制区域基准钟(LPR)改为同步于全网基准钟(PRC),同步质量就可以保证。

目前有GPS、CLONASS、北斗双星导航卫星系统CNSS、欧洲GALILEO等多元化定位资源环境,可以打破了独家垄断,促使资源更加开放。

可以利用市场上现在有的GPS/GLONASS双模接收机、GPS/北斗双模终端进行时钟同步,则可在很大程度上保证同步质量,还可以提高同步精度。例如GPS/GLONASS双模接收机输出时间信号1PPS的准确度如表2所示。


由此可见,使用GLONASS授时精度不会降低;在GPS/GLONASS模式下,其授时精度还可以获得进一步改善。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top