基于激光无线语音通信系统的研制
时间:07-01
来源:互联网
点击:
电磁波作为无线通信的信号载体由来已久,至今仍广泛应用于短波、微波、毫米波无线通信。但它们存在致命的缺陷:保密性差、通信容量低、波段资源受限制等。光纤通信以光作为载体,以光纤作为传输介质。由于光的频带资源十分丰富,故通信容量巨大,已成为现代通信的主体。但光纤通信网络包括光端机、光缆等通信基础设施的建设是事先规划的、固定的,将会出现光缆没有到达或光缆不便到达的地域,无法进行光纤通信。早在二十世纪70年代,人们就开始了激光大气通信技术的研究,但由于当时光纤通信较为成功,激光自由空间的通信未能得到充分重视。近几年来,由于移动通信的需要和微波通信的带宽限制,光自由空间的通信取得了很大的进展。美国朗讯公司采用1.55μm波段的半导体激光器加光纤放大器(EDFA)作为发射光源,并采用波分复用结构,实现10Gbps容量的空间光通信。日本、欧洲等国家也报道了几种空间激光通信装置。我国电子科技大学采用二氧化碳激光器(10.6μm波长,内腔式),实现定点双工四线制三路电话的大气通信(技术成果编号88210414);中山大学激光与光谱学研究所采用音频或数字信号的调幅激光制式工作实现大气通信传输(技术成果编号89209283)。但它们都因通信容量低,在通信系统的结构上,没有与其他通信设施(包括光纤通信、微波通信)的接口,故实用价值小。为解决上述问题,中国科学院上海光学精密机械研究所报导了一种无线激光通信端机实现了与其它通信设施的接口(技术成果编号00217069.8),但由于该端机设备昂贵,未能得到广泛应用。本文提出了基于激光无线语音通信系统的研制,目的在于提供一种价格便宜、携带方便、同机具有激光信号发射和接收装置,且激光接收装置具有自动跟踪激光发射装置的双工通信功能的设备。该设备发射装置发出的调制激光信号不仅可在自由空间传输,也能直接利用光纤作为载体传输,克服了在天气恶劣情况下无法通信的缺陷;该设备信号传输容量大,可直接与光纤通信、微波通信网络并网,并能灵活地适应各种场合的使用。
1 总体方案设计
激光无线通信系统主要由激光发射装置、激光接收装置和光学望远镜三部份组成(如图1所示)。其工作原理是:发射端的同轴电缆通过高频电缆与发射机码型变换器相接;光纤适配器通过光纤与发射机光电转换器相连;码型变换器与光电转换器均与制式选择开关相连,然后经信号处理模块进行整形、放大、时钟提取等处理,输入激光驱动器驱使激光器组件产生调制的激光光束,通过激光发射天线定向向空间发射。经光接收天线收集的调制激光信号接进探测器,转换成电信号输入信号处理模块,再接进制式选择开关后分两路:一路连接激光驱动器,经光纤适配器连接光纤通信线路;另一路则与码型变换器相接,再接入同轴电缆至电传输线路上。对于本系统所设计的语音激光无线通信系统主要由图2所示的各部分组成。
2 主要硬件的设计
2.1 激光器件的选择
空间激光通信波长选择主要考虑:尽量避免太阳辐射的影响、减小光束发射角、减小收发天线的尺寸、光波在大气中的透过率以及器件的现实性或预期的可行性,包括器件性能价格比的预计。从激光无线通信的角度分析,大气的透射率是一个重要影响因素。在小于300nm的紫外波段,大气的透过率急剧下降。显然,紫外线光不利于大气通信。可见波段的激光,例如二次倍频YAG激光器,也不利于避免太阳光引起的背景辐射噪声。常用的激光波段有830~860nm、980~1060nm和1550~1600nm,都是良好的大气窗口。
2.2 光发射与接收天线
由于光学天线的功能是将需传输的光信号有效地发向对方并将对方传来的信号光高效接收,因此,光天线的设计是在满足总体设计的前提下,保证系统在设定的通信距离及大气衰减时能正常工作,合理选取发射望远镜的远场发散角、接收望远镜的接收视场角及光学系统的其他参数。下面分别予以介绍。
(1)设计考虑
主要光学性能要求:高的光学质量(λ/20RMS);低的遮挡率;高的光透射率(T≥0.92);低的散射光。此外,要求材料热膨胀系数小、机械强度高、重量轻、使用寿命长。
光学设计考虑:为了满足空间通信对天线的要求,笔者选择卡塞格伦天线。主要包括:抛物面初级反射镜;双曲线次级反射镜;聚焦镜,使成像在天线结构的外部。
(2)性能分析
假设光源电场强度满足高斯幅度分布,即
其中,ω为光腰大小,R表示曲率半径。
利用菲涅尔近似场区的辐射定律以及天线增益定义,得到观测点(r,θ)处的天线增益值:
定义:
α=a/ω,γ=b/a,X=kasinθ,β=(ka2/2)[(1/r)+(1/R)] ?
次级反射镜的遮挡率,天线的误指向效应以及光学天线的桁架对天线增益都有较大影响。此外,对接收天线的增益,检测方式也有较大影响。
在光学设计时,为了满足空间通信对天线的要求,光发射天线系统如图3(a)所示,它由半导体激光器和设置于其光路上的发射镜构成。光接收天线系统如图3(b)所示,主要由校正镜、校正镜2次镜胶合镜、主镜、滤光片、聚光镜胶合镜和滤光片聚光镜、探测器等组成。其中,探测器采用SI-PIN GT101型复合光电二极管完成光信号转换为相应的电信号。该器件在反向偏置条件下工作,当光照时,半导体吸收光,在耗尽层或离耗尽层一个扩散长度内产生电子空穴对,最后被电场分开。当载流子漂移通过耗尽层时,在外部电路中形成电流,从而实现光电转换。
1 总体方案设计
激光无线通信系统主要由激光发射装置、激光接收装置和光学望远镜三部份组成(如图1所示)。其工作原理是:发射端的同轴电缆通过高频电缆与发射机码型变换器相接;光纤适配器通过光纤与发射机光电转换器相连;码型变换器与光电转换器均与制式选择开关相连,然后经信号处理模块进行整形、放大、时钟提取等处理,输入激光驱动器驱使激光器组件产生调制的激光光束,通过激光发射天线定向向空间发射。经光接收天线收集的调制激光信号接进探测器,转换成电信号输入信号处理模块,再接进制式选择开关后分两路:一路连接激光驱动器,经光纤适配器连接光纤通信线路;另一路则与码型变换器相接,再接入同轴电缆至电传输线路上。对于本系统所设计的语音激光无线通信系统主要由图2所示的各部分组成。
2 主要硬件的设计
2.1 激光器件的选择
空间激光通信波长选择主要考虑:尽量避免太阳辐射的影响、减小光束发射角、减小收发天线的尺寸、光波在大气中的透过率以及器件的现实性或预期的可行性,包括器件性能价格比的预计。从激光无线通信的角度分析,大气的透射率是一个重要影响因素。在小于300nm的紫外波段,大气的透过率急剧下降。显然,紫外线光不利于大气通信。可见波段的激光,例如二次倍频YAG激光器,也不利于避免太阳光引起的背景辐射噪声。常用的激光波段有830~860nm、980~1060nm和1550~1600nm,都是良好的大气窗口。
2.2 光发射与接收天线
由于光学天线的功能是将需传输的光信号有效地发向对方并将对方传来的信号光高效接收,因此,光天线的设计是在满足总体设计的前提下,保证系统在设定的通信距离及大气衰减时能正常工作,合理选取发射望远镜的远场发散角、接收望远镜的接收视场角及光学系统的其他参数。下面分别予以介绍。
(1)设计考虑
主要光学性能要求:高的光学质量(λ/20RMS);低的遮挡率;高的光透射率(T≥0.92);低的散射光。此外,要求材料热膨胀系数小、机械强度高、重量轻、使用寿命长。
光学设计考虑:为了满足空间通信对天线的要求,笔者选择卡塞格伦天线。主要包括:抛物面初级反射镜;双曲线次级反射镜;聚焦镜,使成像在天线结构的外部。
(2)性能分析
假设光源电场强度满足高斯幅度分布,即
其中,ω为光腰大小,R表示曲率半径。
利用菲涅尔近似场区的辐射定律以及天线增益定义,得到观测点(r,θ)处的天线增益值:
定义:
α=a/ω,γ=b/a,X=kasinθ,β=(ka2/2)[(1/r)+(1/R)] ?
次级反射镜的遮挡率,天线的误指向效应以及光学天线的桁架对天线增益都有较大影响。此外,对接收天线的增益,检测方式也有较大影响。
在光学设计时,为了满足空间通信对天线的要求,光发射天线系统如图3(a)所示,它由半导体激光器和设置于其光路上的发射镜构成。光接收天线系统如图3(b)所示,主要由校正镜、校正镜2次镜胶合镜、主镜、滤光片、聚光镜胶合镜和滤光片聚光镜、探测器等组成。其中,探测器采用SI-PIN GT101型复合光电二极管完成光信号转换为相应的电信号。该器件在反向偏置条件下工作,当光照时,半导体吸收光,在耗尽层或离耗尽层一个扩散长度内产生电子空穴对,最后被电场分开。当载流子漂移通过耗尽层时,在外部电路中形成电流,从而实现光电转换。
半导体 放大器 电子 二极管 电路 电流 功率放大器 电压 滤波器 集成电路 相关文章:
- 铁电存储器工作原理和器件结构(05-22)
- 电子熔丝在计算机应用中的优势(06-08)
- 卓联 Marvell?联手展示网络同步Ethernet解决方案(01-07)
- 恩智浦半导体发布USB收发器(02-23)
- 安森美扩充电源计算产品系列 推出新双缘多相控制器(03-13)
- ST推出测试65nm多标准硬盘驱动器物理层IP模块(04-08)