射频nRF9E5与无线耳机系统设计
时间:06-08
来源:互联网
点击:
本文所述无线耳机在设计上有两个特:一是印刷线路板体积一定要小;二是作为电池供电的电子产品,一定要求把线路的功耗设计得非常低。根据以上第一点原则,在设计中一是要尽可能的采用集成度高的贴片封装芯片,二是芯片的外围元件一定要少;根据第二原则,除了采用低功耗芯片设计产品外,产品中在守候状态时应使电源间歇脉冲供电。Nordic VLSI公司推出的射频收发芯片nRF9E5特别适合我们的要求。该芯片内置nRF905 433/868/915MHz收发器、8051兼容微控制器和4输入10位80 ksps AD转换器,是真正的系统级芯片。内置nRF905收发器与nRF905 芯片的收发器一样,可以工作在ShockBurstTM(自动处理前缀、地址和CRC)方式。内置电压调整模块,最大限度地抑制噪音,为系统提供1.9V到3.6V的工作电压。nRF9E5符合美国通信委员会和欧洲电信标准学会的相关标准。由于nRF905功耗低,工作可靠,因此很适用于无线耳机设计。
1 nRF9E5功能介绍
1.1 控制器
nRF9E5 的片内微控制器与标准8051 兼容,其中断控制器支持5 个扩展中断源:ADC 中断、SPI 中断、RADIO1中断、RADIO2 中断和唤醒定时器中断。片内控制器还有3 个与8052 相同的定时器。1 个和8051相同的串口,可以用定时器1 和定时器2 来作为异步通信的波特率产生器。此外, 还扩展了2 个数据指针, 以方便于从XRAM 区读取数据。微处理器中有256B的数据RAM和512B的ROM。上电复位或软件复位后, 处理器自动执行ROM引导区中的代码。用户程序通常是在引导区的引导下, 从EEPROM加载到1个4KB的RAM中, 这个4KB的RAM也可作存储数据用。
微控中还包含SPI接口,引脚有MISO( 接收EEPROM的SDO送来的数据) 、S C K (给EEPROM的SCK提供时钟信号)、MOSI(送数据到EEPROM的SDI)、EECSN(给EEPROM 的CSN 送使能信号) 。SPI 口的MISO 、SCK和MOSI 与P1 口的低3 位重用,通过寄存器SPI_CTRL 控制来控制功能间的撤换。S P I 硬件不产生任何片选信号,可以用GPIO 口来进行片选。通常,系统上电时,SPI 自动和片外25320 相连。当程序加载完成后,MISO(P1.2)、MOSI(P1.0)和SCK(P1.0)可能会用作其它用途,比如其它的SPI 器件或GPIO。这使得nRF9E5其内置的微控制器的功能十分强大。
1.2 射频收发器
nRF9E5 收发器通过内部并行口或内部SPI 口与其它模块进行通信,具有同单片射频收发器nRF905 相同的功能。收发器通过片内MCU的并行口或S P I 口与微控制器通信, 数据准备好,载波检测和地址匹配信号能够作为微控制器和中断。nRF9E5 工作于433/868/915MHz ISM 频段。收发器由1 个完整的频率合成器、1 个功率放大器、1 个调节器和2 个接收器组成。输出功率、频道和其它射频参数可通过对特殊功能寄存器RADIO(0xA0) 编程进行控制。发射模式下,射频电流消耗为11mA,接收模式下为12.5mA。为了节能, 可通过程序控制收发器的开/ 关。
1.2.1 nRF9E5收发方式的选择
与nRF401 和nRF903不同的是,nRF9E5 使用SPI 接口进行单片机与无线模块间的数据传输。这部分在nRF9E5片内的8051 内核与nRF905 射频收发器之间完成。nRF9E5的收发器有三种工作方式,ShockBurst 接收(RX)方式、ShockBurst 发送(TX)方式和空闲方式。当收发器在空闲方式下, 微控器依然在运行。nRF9E5 收发器的工作方式由特殊功能寄存器T R X _ C E和TX_EN 决定,具体见表1 所列。
表1 nRF9E5工作模式
nRF9E5 使用Nordic VLSI 公司的ShockBurst 的特性,进行高速的数据传输。与射频数据相关的协议由nRF9E5 片内的nRF905 收发器自动处理。nRF9E5 只用简单的SPI 接口便能和nRF905 进行数据传输,数据传输的速度取决于SPI 接口的速度,这个可以在nRF9E5 片内8051内核中进行配置。ShockBurst 实现低速数据输入,高速数据输出,从而降低了系统的平均能耗。在ShockBurst接收方式下,当收到一个有效地址的射频数据包时, 地址匹配寄存器位(AM)和数据准备好寄存器位(DR)通知片内MCU 把数据读出。在ShockBurst 发送方式下,nRF9E5自动给要发送的数据加上前缀和C R C 校验。当数据发送完后,数据准备好寄存器位( D R )会通知MCU 数据已经处理完毕。当系统没有发送和接收任务时, 其进入空闲方式。nRF9E5 在空闲方式下,一旦有任务要处理时,其能够在很短的时间内就进入ShockBurst 接收方式和ShockBurst发送方式。空闲方式下, 晶体振荡器依然工作,配置字中的内容不至于丢失。
1.2.2 nRF9E5收发时的载波检测功能
对于nRF9E5而言,其最大的优点是具有载波检测功能。在ShockBurst 接收方式下,当出现nRF9E5 工作信道内的射频载波时,载波检测引脚(CD)被置高, 这个特性很好的避免了同一工作频率下不同发射器数据包之间的碰撞,有效的防止了信号的干扰。当收发器准备发射数据时, 它首先进入接收方式并探测所工作的信道是否空闲。载波检测的标准一般比灵敏度低5 dB,比如,灵敏度为-100 dBm,载波检测功能探测低至-105 dBm 的载波。也就是说,载波低于-105 dBm,载波检测信号为低(一般为0),高于-95 dBm,则载波检测信号为高(一般为VDD),介于-105~95 dBm 之间, 载波检测信号可能为低也可能为高。
1 nRF9E5功能介绍
1.1 控制器
nRF9E5 的片内微控制器与标准8051 兼容,其中断控制器支持5 个扩展中断源:ADC 中断、SPI 中断、RADIO1中断、RADIO2 中断和唤醒定时器中断。片内控制器还有3 个与8052 相同的定时器。1 个和8051相同的串口,可以用定时器1 和定时器2 来作为异步通信的波特率产生器。此外, 还扩展了2 个数据指针, 以方便于从XRAM 区读取数据。微处理器中有256B的数据RAM和512B的ROM。上电复位或软件复位后, 处理器自动执行ROM引导区中的代码。用户程序通常是在引导区的引导下, 从EEPROM加载到1个4KB的RAM中, 这个4KB的RAM也可作存储数据用。
微控中还包含SPI接口,引脚有MISO( 接收EEPROM的SDO送来的数据) 、S C K (给EEPROM的SCK提供时钟信号)、MOSI(送数据到EEPROM的SDI)、EECSN(给EEPROM 的CSN 送使能信号) 。SPI 口的MISO 、SCK和MOSI 与P1 口的低3 位重用,通过寄存器SPI_CTRL 控制来控制功能间的撤换。S P I 硬件不产生任何片选信号,可以用GPIO 口来进行片选。通常,系统上电时,SPI 自动和片外25320 相连。当程序加载完成后,MISO(P1.2)、MOSI(P1.0)和SCK(P1.0)可能会用作其它用途,比如其它的SPI 器件或GPIO。这使得nRF9E5其内置的微控制器的功能十分强大。
1.2 射频收发器
nRF9E5 收发器通过内部并行口或内部SPI 口与其它模块进行通信,具有同单片射频收发器nRF905 相同的功能。收发器通过片内MCU的并行口或S P I 口与微控制器通信, 数据准备好,载波检测和地址匹配信号能够作为微控制器和中断。nRF9E5 工作于433/868/915MHz ISM 频段。收发器由1 个完整的频率合成器、1 个功率放大器、1 个调节器和2 个接收器组成。输出功率、频道和其它射频参数可通过对特殊功能寄存器RADIO(0xA0) 编程进行控制。发射模式下,射频电流消耗为11mA,接收模式下为12.5mA。为了节能, 可通过程序控制收发器的开/ 关。
1.2.1 nRF9E5收发方式的选择
与nRF401 和nRF903不同的是,nRF9E5 使用SPI 接口进行单片机与无线模块间的数据传输。这部分在nRF9E5片内的8051 内核与nRF905 射频收发器之间完成。nRF9E5的收发器有三种工作方式,ShockBurst 接收(RX)方式、ShockBurst 发送(TX)方式和空闲方式。当收发器在空闲方式下, 微控器依然在运行。nRF9E5 收发器的工作方式由特殊功能寄存器T R X _ C E和TX_EN 决定,具体见表1 所列。
表1 nRF9E5工作模式
nRF9E5 使用Nordic VLSI 公司的ShockBurst 的特性,进行高速的数据传输。与射频数据相关的协议由nRF9E5 片内的nRF905 收发器自动处理。nRF9E5 只用简单的SPI 接口便能和nRF905 进行数据传输,数据传输的速度取决于SPI 接口的速度,这个可以在nRF9E5 片内8051内核中进行配置。ShockBurst 实现低速数据输入,高速数据输出,从而降低了系统的平均能耗。在ShockBurst接收方式下,当收到一个有效地址的射频数据包时, 地址匹配寄存器位(AM)和数据准备好寄存器位(DR)通知片内MCU 把数据读出。在ShockBurst 发送方式下,nRF9E5自动给要发送的数据加上前缀和C R C 校验。当数据发送完后,数据准备好寄存器位( D R )会通知MCU 数据已经处理完毕。当系统没有发送和接收任务时, 其进入空闲方式。nRF9E5 在空闲方式下,一旦有任务要处理时,其能够在很短的时间内就进入ShockBurst 接收方式和ShockBurst发送方式。空闲方式下, 晶体振荡器依然工作,配置字中的内容不至于丢失。
1.2.2 nRF9E5收发时的载波检测功能
对于nRF9E5而言,其最大的优点是具有载波检测功能。在ShockBurst 接收方式下,当出现nRF9E5 工作信道内的射频载波时,载波检测引脚(CD)被置高, 这个特性很好的避免了同一工作频率下不同发射器数据包之间的碰撞,有效的防止了信号的干扰。当收发器准备发射数据时, 它首先进入接收方式并探测所工作的信道是否空闲。载波检测的标准一般比灵敏度低5 dB,比如,灵敏度为-100 dBm,载波检测功能探测低至-105 dBm 的载波。也就是说,载波低于-105 dBm,载波检测信号为低(一般为0),高于-95 dBm,则载波检测信号为高(一般为VDD),介于-105~95 dBm 之间, 载波检测信号可能为低也可能为高。
电子 射频 收发器 电压 ADC ADI MCU 放大器 电流 单片机 振荡器 滤波器 电感 解码器 蓝牙 电阻 汽车电子 相关文章:
- 变革电信网网络安全框架 (01-03)
- 浅谈IPv6技术的若干问题(01-09)
- LG电子低成本CDMA手机的设计原则剖析 (01-12)
- 专家教你做个病毒高手(04-30)
- 数据库归档要考虑的四大问题(05-26)
- 5个步骤成功加密电子邮件(07-18)