国外印制电路板制造技术发展动向
时间:09-16
来源:互联网
点击:
一、 国外印制电路板制造技术发展简况
随着微型器件制造和表面安装技术的发展,促使印制板的制造技术的革新和改进的速度更快,特别是电路图形的导线宽度目前国外广泛采用是引脚间通过三根导线、达到实用化阶段的导线宽度是引脚间通过4-5根导线,并向着更细的导线宽度发展。为适应SMD多引线窄间距化,实现印制电路板布线细线化。正在普及的工艺是:普遍采用CAD/CAM系统,从设计提供的数据通过制造系统转换成生产用的资料;在原材料方面采用薄铜箔和薄干膜光刻胶;由于窄间距要求印制电路板表面具有光面平坦的铜表面,以便制作微型焊盘和具有细线及其窄间距的电路图形;所使用的基材应具有较高的热冲击能力,以使印制电路板在电装过程中经过多次也不会产生气泡、分层及焊盘鼓起等缺陷,确保表面安装组件的高可靠性;并采用高粘度铜箔和改性环氧树脂确保在焊接温度下保持其足够的粘合强度、并还应具有高的尺寸稳定性,确保制作过程精细电路图形定位的一致性和准确性的要求。总之,细导线化、窄间距化的印制电路板制造技术发展速度是很快的,要想跟上世界先进的技术水平,就必须了解目前国外在这方面的发展动态。
二、 国外在关键工艺技术发展动向
1、 底片制作及图形转移工艺
底片制作及图形转移质量,直接影响制作精细电路图形的品质。所以,在制作底片时普遍采用计算机辅助设计系统(CAD),进行电路设计并与计算机辅助制造系统(CAM)接口通过数据转换制作出高精度、高分辨率的光绘底片。由于导线密度高,导线宽度与间距0.10-0.05mm,为保证底片导线图形的精度和准确度,以及电路图形成像质量,要求工作间的洁净度较高,通常采用万级或千级,才能确保底片成像的高质量。
在图形转移工艺方面,成像采用的材料具有高解像度的薄光敏抗蚀剂、CD(电泳法)及阻焊采用液体光敏阻焊剂。其中电泳法涂布的光致抗蚀层,厚度5-30微米,可控,其分辨率达到0.05-0.03mm。对提高精细电路图形和阻焊图形的精确度和一致性起到了很大的作用。
在电路图形转移过程中,除了严格控制工艺参数外,同样对工作间的洁净程度要求也非常高,达到了万级标准或更小些。为确保图形转移的高质量,还要保证室内工作条件,如控制室内温度在21±1℃、相对湿度55-60%。对所制作的底片和图形转移成像的半成品,都必须100%的进行检查。
2、 钻孔工艺技术
钻孔质量首先要保证电镀通孔的高可靠性和高质量,就必须严格控制钻孔质量。在这方面国内外都十分重视。特别是表面封装多层印制电路板的板厚与孔径比较高,因此电镀通孔的质量成了提高表面封装印制电路板合格率的关键。目前国外在通孔孔径尺寸选择上,采用直径0.25-0.30mm。通孔的小径化的关键是高精度、高稳定性数控钻床的开发和使用,近年来国外已开发和使用能钻直径为0.10mm孔的CNC钻床和专用工具。在钻孔方面,经验告诉我们,在研究基材的物理和化学性能的基础上,正确地选择钻孔工艺参数是非常重要的。同时还要正确的选择所采用的辅助材料及相配套的工夹具(如:上下垫板、定位方法、钻头等)。为适应微孔径还采用激光打孔技术。
3、 孔金属化技术
在孔金属化技术方面,为了确保孔金属化质量的高可靠性,在钻孔后的预处理采用新型的凹蚀与去沾污的工艺方法即低碱性高锰酸钾法,提供非常优异的孔壁表面,消除了楔形槽和裂缝缺陷。并采用先进的直接电镀工艺、真空金属化工艺和其它工艺方法,适应多种类型印制电路板的小孔、微孔、盲孔和埋孔孔金属化需要。
4、 真空层压工艺
特别是制造多层压印制电路板,国外普遍采用真空多层压机。这是由于表面安装多层印制电路板内部图形有特性阻抗(Z0)要求。因为特性阻抗与介质层的厚度及导线宽度有关(见下列公式):
Z0=60 /ε.LN .4H/D0&n bsp; 注: ε为材料的介质常数
H介质材料的厚度
D0为导线的实际宽度
其中介质常数和导线实际宽度已知,所以介质材料的厚度,就成为特性阻抗的关键因素。采用真空层压设备和计算机控制,使层压质量有着显著的提高。因为真空层压前多层印制电路板层与层之间已经真空排气,除去低分子挥发物,使层压压力有极为明显的降低,仅是常规多层印制电路板层压压力1/4-1/2,从而使多层印制电路板导线图形层之间的介质材料厚度均匀、精度高、公差小,保证特性阻抗Z0在设计要求的范围以内的技术指标。同时,采用真空层压工艺,对提高多层印制电路板的表面平整度、减少多层印制电路板质量缺陷(如缺胶、分层、白斑及错位等)。
三、 检测技术
随着微型器件制造和表面安装技术的发展,促使印制板的制造技术的革新和改进的速度更快,特别是电路图形的导线宽度目前国外广泛采用是引脚间通过三根导线、达到实用化阶段的导线宽度是引脚间通过4-5根导线,并向着更细的导线宽度发展。为适应SMD多引线窄间距化,实现印制电路板布线细线化。正在普及的工艺是:普遍采用CAD/CAM系统,从设计提供的数据通过制造系统转换成生产用的资料;在原材料方面采用薄铜箔和薄干膜光刻胶;由于窄间距要求印制电路板表面具有光面平坦的铜表面,以便制作微型焊盘和具有细线及其窄间距的电路图形;所使用的基材应具有较高的热冲击能力,以使印制电路板在电装过程中经过多次也不会产生气泡、分层及焊盘鼓起等缺陷,确保表面安装组件的高可靠性;并采用高粘度铜箔和改性环氧树脂确保在焊接温度下保持其足够的粘合强度、并还应具有高的尺寸稳定性,确保制作过程精细电路图形定位的一致性和准确性的要求。总之,细导线化、窄间距化的印制电路板制造技术发展速度是很快的,要想跟上世界先进的技术水平,就必须了解目前国外在这方面的发展动态。
二、 国外在关键工艺技术发展动向
1、 底片制作及图形转移工艺
底片制作及图形转移质量,直接影响制作精细电路图形的品质。所以,在制作底片时普遍采用计算机辅助设计系统(CAD),进行电路设计并与计算机辅助制造系统(CAM)接口通过数据转换制作出高精度、高分辨率的光绘底片。由于导线密度高,导线宽度与间距0.10-0.05mm,为保证底片导线图形的精度和准确度,以及电路图形成像质量,要求工作间的洁净度较高,通常采用万级或千级,才能确保底片成像的高质量。
在图形转移工艺方面,成像采用的材料具有高解像度的薄光敏抗蚀剂、CD(电泳法)及阻焊采用液体光敏阻焊剂。其中电泳法涂布的光致抗蚀层,厚度5-30微米,可控,其分辨率达到0.05-0.03mm。对提高精细电路图形和阻焊图形的精确度和一致性起到了很大的作用。
在电路图形转移过程中,除了严格控制工艺参数外,同样对工作间的洁净程度要求也非常高,达到了万级标准或更小些。为确保图形转移的高质量,还要保证室内工作条件,如控制室内温度在21±1℃、相对湿度55-60%。对所制作的底片和图形转移成像的半成品,都必须100%的进行检查。
2、 钻孔工艺技术
钻孔质量首先要保证电镀通孔的高可靠性和高质量,就必须严格控制钻孔质量。在这方面国内外都十分重视。特别是表面封装多层印制电路板的板厚与孔径比较高,因此电镀通孔的质量成了提高表面封装印制电路板合格率的关键。目前国外在通孔孔径尺寸选择上,采用直径0.25-0.30mm。通孔的小径化的关键是高精度、高稳定性数控钻床的开发和使用,近年来国外已开发和使用能钻直径为0.10mm孔的CNC钻床和专用工具。在钻孔方面,经验告诉我们,在研究基材的物理和化学性能的基础上,正确地选择钻孔工艺参数是非常重要的。同时还要正确的选择所采用的辅助材料及相配套的工夹具(如:上下垫板、定位方法、钻头等)。为适应微孔径还采用激光打孔技术。
3、 孔金属化技术
在孔金属化技术方面,为了确保孔金属化质量的高可靠性,在钻孔后的预处理采用新型的凹蚀与去沾污的工艺方法即低碱性高锰酸钾法,提供非常优异的孔壁表面,消除了楔形槽和裂缝缺陷。并采用先进的直接电镀工艺、真空金属化工艺和其它工艺方法,适应多种类型印制电路板的小孔、微孔、盲孔和埋孔孔金属化需要。
4、 真空层压工艺
特别是制造多层压印制电路板,国外普遍采用真空多层压机。这是由于表面安装多层印制电路板内部图形有特性阻抗(Z0)要求。因为特性阻抗与介质层的厚度及导线宽度有关(见下列公式):
Z0=60 /ε.LN .4H/D0&n bsp; 注: ε为材料的介质常数
H介质材料的厚度
D0为导线的实际宽度
其中介质常数和导线实际宽度已知,所以介质材料的厚度,就成为特性阻抗的关键因素。采用真空层压设备和计算机控制,使层压质量有着显著的提高。因为真空层压前多层印制电路板层与层之间已经真空排气,除去低分子挥发物,使层压压力有极为明显的降低,仅是常规多层印制电路板层压压力1/4-1/2,从而使多层印制电路板导线图形层之间的介质材料厚度均匀、精度高、公差小,保证特性阻抗Z0在设计要求的范围以内的技术指标。同时,采用真空层压工艺,对提高多层印制电路板的表面平整度、减少多层印制电路板质量缺陷(如缺胶、分层、白斑及错位等)。
三、 检测技术
- 点评:全方位剖析中国集成电路核心技术发展之困(01-08)
- 布线工程师如何充分掌控时钟信号?(02-01)
- 高速数字电路设计之串音分析(11-01)
- PCB反设计系统中的探测电路(02-18)
- PCB电路版图设计的常见问题 (11-01)
- 电源完整性分析应对高端PCB系统设计挑战(11-01)