微波EDA网,见证研发工程师的成长!
首页 > PCB和SI > EDA和PCB设计文库 > EMI/EMC设计讲座(五)映像平面的分割与隔离

EMI/EMC设计讲座(五)映像平面的分割与隔离

时间:07-20 来源:互联网 点击:

换噪声(switching noise)可能会注入至模拟区块内,所以必须采用隔离或过滤方法。从数字绕至模拟区块的所有走线必须经过「桥梁」。对模拟电源而言,必须使用一个铁粉芯导线来跨越「壕沟」。也可能需要一个稳压器(voltage regulator)。通常,「壕沟」是100%地围绕着被分割的模拟电源区域。

某些模拟组件需要将模拟接地与数字接地连接起来,不过这必须经由一个「桥梁」才行。如附图五所示。有许多模拟-数字和数字-模拟装置,在同一个封装构造内,将它们的模拟接地(AGND)和数字接地(DGND)连接在一起。当一个组件内部是采用这种分割方法来设计时,则在PCB布线时,模拟和数字接地只需要一个接地连接线(亦即,共享一个接地线)。只有当组件内部有将AGND和DGND分开时,AGND和DGND才需要彼此以「壕沟」隔开。在 进行PCB布线时,工程师必须事先询问组件供货商,要如何正确地隔离或连接AGND和DGND。

   
  图五:数字和模拟分割的概念
  

不正确地使用映射平面
  

映射平面虽然很好用,但是如果错误地使用它,将会造成严重的电磁干扰问题。一个映像平面要能够有效,所有的讯号走线必须与一个固定平面相邻,而且不能跨越铜线的隔离区域。不过,使用某些特殊的走线绕线技术却是例外。如果一条讯号走线,或甚至一条电源走线(例如:在+5 V电源平面上的一条+12 V走线)在一个固定平面内绕线,则这个固定平面将被切割成许多个小部份。一个接地或射频讯号返回回路的设计规则,目前已经被建立起来,这是在相邻的电路板层之间测量射频返回电流的大小。这种电流的存在代表了映射平面并没有被正确地使用。这种射频回路的产生,是因为射频电流无法在讯号走线内找到一条直接的、低阻抗的返回路径。
  

附图六说明了映射平面被不正确地使用的情形。这些平面现在已经无法成为一个固定的0 V参考点,以去除共模的射频电流。由于平面的切割所造成的损失,最后可能会产生射频电场。在一个映射平面上的通孔(via)并不会减弱该平面的映射能力,但接地插槽(ground slot)除外。
  

图六:走线不正确地使用映射平面
  

另一个与接地平面的不连续性有关之议题是:使用穿洞(through-hole)组件。在一个电源或接地平面上使用过多的穿洞组件,将会产生所谓的「瑞士奶酪病症(Swiss Cheese Syndrome)」。由于穿洞太多,许多洞都彼此重迭,致使平面上的铜区块减少,不连续的区域就变大了。这个效应如附图七所示。在映射平面上的返回电流是沿着洞孔边缘流动,而讯号走线则是以直线路径跨越不连续的区块。如附图七所示,在接地平面上的返回电流必须绕过插槽或洞孔。其结果是,必须增加走线的长度,才能传送返回电流。增长的走线长度会使返回走线的电感值增加。因为E = L(dI/dt),当返回路径的电感值增加时,讯号走线与射频电流返回路径之间的差模耦合效果就会降低,磁通相抵(flux cancellation)的效果也会减少。对洞孔不是很大的穿洞组件而言----其接脚之间仍然具有空间,降低讯号和返回电流的最佳方法是:降低返回路径和固定平面上的电感值。
  
如果一条讯号走线是沿着穿洞区域(不连续区域)行走,则一个固定的映射平面(射频返回路径)将会沿着所有的讯号路径存在着。在附图七右侧,因为接地平面没有不连续,所以走线长度可以缩短。相反的,在附图七左侧,如果走线长度增加,就会增加电感值。当走线长度增加后,会造成能量反射,破坏讯号的完整性和应有的功能,也会产生射频电流回路,如同天线一样。
  
为了缩短走线的长度,而必须使讯号走线穿过PCB的插槽或洞孔时,在走线和洞孔附近空间之间必须遵守「3-W法则」:走线之间的间距必须是单一走线宽度的三倍;或者说:两走线之间的间距 〉单一走线宽度的两倍。
  
附图八是使用电容使射频返回电流能够穿越插槽或「壕沟」。此电容为射频电流提供了交流并联电路,藉此,射频电流可以穿越「壕沟」。它大约可以提高20dB的效能。不过,这种方法可能会在走线电流和它们的映射电流之间,产生电抗(reactance)位移的现象,最后将使磁通相抵(flux cancellation)的效果减弱。所以,最好使用上述的隔离法或桥接法来解决。

  

图七:使用穿洞组件时的接地回路


  

  
图八:利用电容使射频返回电流可以穿越「壕沟」

栏目分类

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top