微波EDA网,见证研发工程师的成长!
首页 > PCB和SI > EDA和PCB设计文库 > 高速电路设计中信号完整性分析

高速电路设计中信号完整性分析

时间:03-08 来源:互联网 点击:
由于系统时钟频率和上升时间的增长,信号完整性设计变得越来越重要。不幸的是,绝大多数数字电路设计者并没意识到信号完整性问题的重要性,或者是直到设计的最后阶段才初步认识到。

本篇介绍了高速数字硬件电路设计中信号完整性在通常设计的影响。这包括特征阻抗控制、终端匹配、电源和地平面、信号布线和串扰等问题。掌握这些知识,对一个数字电路设计者而言,可以在电路设计的早期,就注意到潜在可能的信号完整性问题,还可以帮助设计则在设计中尽量避免信号完整性对设计性能的影响。

尽管,信号完整性一直以来都是硬件工程师必备的设计经验中的一项,但是在数字电路设计中长期被忽略。在低速逻辑电路设计时代,由于信号完整性相关的问题很少出现,因此对信号完整性的考虑本认为是浪费效率。然而近几年随着时钟率和上升时间的增长,信号完整性分析的必要性和设计也在增长。不幸的是,大多数设计者并没有注意到,而仍然在设计中很少去考虑信号完整性的问题。

现代数字电路可以高达GHz 频率并且上升时间在50ps以内。在这样的速率下,在PCB设计走线上的疏忽即使是一个英尺,而由此造成的电压、时延和接口问题将不仅仅局限在这一根线上,还将会影响的全板及相邻的板。

这个问题在混合电路中尤为严重。例如,考虑到在一个系统中有高性能的ADC 到数字化接收模拟信号。散布在ADC器件的数字输出端口上的能量可能很容易就达到130dB(10,000,000,000,000 倍)比模拟输入端口。在ADC数字端口上的任何噪声。设计中的信号完整性并不是什么神秘莫测的过程。对于在设计的早期意识到可能潜在的问题是很关键的,同时可以有效避免由此在后期造成的问题。本篇讨论了一些关键的信号完整性挑战及处理他们的方法。

确保信号完整性:

1、隔离

一块PCB板上的元器件有各种各样的边值(edge rates)和各种噪声差异。对改善SI最直接的方式就是依据器件的边值和灵敏度,通过PCB板上元器件的物理隔离来实现。下图是一个实例。在例子中,供电电源、数字I/O端口和高速逻辑这些对时钟和数据转换电路的高危险电路将被特别考虑。第一个布局中放置时钟和数据转换器在相邻于噪声器件的附近。噪声将会耦合到敏感电路及降低他们的性能。第二个布局做了有效的电路隔离将有利于系统设计的信号完整性。



2、阻抗、反射及终端匹配

阻抗控制和终端匹配是高速电路设计中的基本问题。通常每个电路设计中射频电路均被认为是最重要的部分,然而一些比射频更高频率的数字电路设计反而忽视了阻抗和终端匹配。

由于阻抗失配产生的几种对数字电路致命的影响,参见下图:



a.数字信号将会在接收设备输入端和发射设备的输出端间造成反射。反射信号被弹回并且沿着线的两端传播直到最后被完全吸收。
b.反射信号造成信号在通过传输线的响铃效应,响铃将影响电压和信号时延和信号的完全恶化。
c.失配信号路径可能导致信号对环境的辐射。

由阻抗不匹配引起的问题可以通过终端电阻降到最小。终端电阻通常是在靠近接收端的信号线上放置一到两个分立器件,简单的做法就是串接小的电阻。

终端电阻限制了信号上升时间及吸收了部分反射的能量。值得注意的是利用阻抗匹配并不能完全消除破坏性因素。然而认真的选用合适的器件,终端阻抗可以很有效的控制信号的完整性。

并不是所有的信号线都需要阻抗控制,在一些诸如紧凑型 PCI 规格要求中的特征阻抗和终端阻抗特性。

对于别的没有阻抗控制规范要求的其他标准以及设计者并没有特意关注的。最终的标准可能发生变化从一个应用到另一个应用中。因此需要考虑信号线的长度(相关与延迟Td)以及信号上升时间(Tr)。通用的对阻抗控制规则是Td(延迟)应大于Tr的1/6。

3、内电层及内电层分割

在电流环路设计中会被数字电路设计者忽视的因素,包括对单端信号在两个门电路间传送的考虑(如下图)。从门A 流向门B的电流环路,然后再从地平面返回到门A。



上图中将会出现两个潜在的问题:

a、A 和B两点间地平面需要被连接通过一个低阻抗的通路如果地平面间连接了较大的阻抗,在地平面引脚间将会出现电压倒灌。这就必将会导致所有器件的信号幅值的失真并且叠加输入噪声。

b、电流回流环的面积应尽可能的小,环路好比天线。通常说话,一种更大环路面积将会增大了环路辐射和传导的机会。每一个电路设计者都希望回流电流都可直接沿着信号线,这样就最小的环路面积。

用大面积接地可以同时解决以上两个问题。大面积接地可以提供所有接地点间小的阻抗,同时允许返回电流尽量直接沿着信号线返回。

在 PCB设计者中一个常见的错误是在地电层上打过孔和开槽。下图显示了当一条信号线在一个开过槽的地电层上的电流流向。回路电流将被迫绕过开槽,这就必然会产生一个大的环流回路。



通常而言,在地电源平面上是不可以开槽的。然而,在一些不可避免要开槽的场合,PCB 设计者必须首先确定在开槽的区域没有信号回路经过。同样的规则也适用于混合信号电路。

PCB 板中除非用到多个地层。特别是在高性能ADC电路中可以利用分离模拟信号、数字信号及时钟电路的地层有效的减少信号间的干扰。需要再次强调的,在一些不可避免要开槽的场合,PCB设计者必须首先确定在开槽的区域没有信号回路经过。

在带有一个镜像差异的电源层中也应注意层间区域的面积(如下图)。在板卡的边缘存在电源平面层对地平面层的辐射效应。从边沿泄漏的电磁能量将破坏临近的板卡。见下图a。适当的减少电源平面层的面积(见下图b),以至于地平面层在一定的区域内交叠。这将减少电磁泄漏对邻近板卡的影响。



栏目分类

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top