微功率冲击雷达系统接收信号处理电路设计
同时也具有滤除干扰的作用。
2.3.1、低通滤波器设计
人体的呼吸率和心率都小于10 Hz,因此前级放大器输出信号先通过10 Hz低通滤波器滤除其他干扰信号,后级0.6 Hz的低通滤波器用于检测人体呼吸信号。
该低通滤波电路主要滤除干扰信号,并且要求幅频特性中有最大的平坦区,为此选用四阶压控电压源巴特沃斯But-terworth型滤波器。压控电压源型电路结构的滤波器特点是使用元件少,对放大器要求不高。在本级电路中,电阻器误差小于0.01%,电容器误差小于O.1%。由于电路中所选电阻值不在电阻序列之内,故实际电路中,用多个电阻串联以求得到所需的阻值,电路中电容必须经过严格挑选。电路原理如图5所示。10 Hz,0.6 Hz四阶Butterworth LPF电路的元件值如表1所示。
2.3.2、0.7Hz高通滤波器电路
0.7 Hz的高通滤波器用来检测心跳信号,这里采用2个二阶压控高通滤波器串联形成的四阶高通滤波器来构成O.7Hz高通滤波器,其电路如图6所示。
2.3.3、50 Hz陷波器电路
50 Hz陷波器在电路中起着重要作用。在检测过程中,直流电源、周围环境中的输电线路等都会对信号预处理电路产生50 Hz的工频干扰。因此,在电路中加入50 Hz陷波器滤除由其他电路耦合进来的50 Hz干扰信号是非常必要的,其电路如图7所示。50 Hz陷波器的设计要求为:fo=50 Hz;B≤4 Hz;Q≥10。
电路采用50 Hz带通滤波器和加法电路组成,一路经10kΩ电阻进入加法器输入端,一路经增益为-1的50 Hz带通滤波器,经10 kΩ电阻耦合进入加法器输入端。两路信号相加,得到50 Hz陷波器。
3、试验结果
根据前面的设计电路,对0.05~10 Hz带通滤波器、10 Hz和0.6 Hz的低通滤波器、0.7 Hz的高通滤波器及50 Hz的陷波器电路中各元件进行估值并通过MulTIsim仿真且反复调试,并通过电路试验,获得了较为理想的幅频特性,各部分电路的幅频特性测试结果如图8所示。从图8中可以看出,0.05~10 Hz带通滤波器、10 Hz和0.6 Hz低通滤波器、0.7 Hz的高通滤波器都具有平坦的3 dB通频带,50 Hz陷波器的Q值大于5。
4、结论
本文设计了一种微功率冲击雷达系统接收信号处理电路,给出了各子模块电路的设计原理,以及主要模块的仿真调试结果,仿真结果显示:主要电路,即带通滤波器和放大滤波器的幅频特性理想。按此仿真结果设计的电路经测试实现了理论设计要求。依据该设计制作的电路具有结构简单、成本低、性能好的特点,在超宽带技术中具有一定的实用价值。
作者:任郁苗 解晓琳 倪原 郭玉萍