微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 微波器件设计 > 开槽波导3次谐波回旋行波放大管非线性理论与数值模拟

开槽波导3次谐波回旋行波放大管非线性理论与数值模拟

时间:11-13 来源:互联网 点击:

求得[6,8,9].

三、自洽非线性理论
  在热腔中,高频场沿轴向呈缓变分布状况,其对横坐标(r,φ)的分布函数与冷腔情况相同.下面给出Ⅰ区中的热腔高频电场分量(TE波)表达式.

g136-3.gif (1095 bytes) (11)
g136-4.gif (1019 bytes) (12)
Ez=0 (13)

  上述各式中,Cmn为电场归一化系数,f(z)为一复函数,代表高频场沿Z轴的缓变分布情况.Cmn的值由下式求得

g136-5.gif (932 bytes)
g136-6.gif (1857 bytes) (14)

  以下是自洽非线性注波互作用常微分方程组.
  从洛伦兹公式
g136-7.gif (906 bytes)出发[8],可推得电子在高频场(E,B)和直流磁场(B0)作用下的运动方程.每个电子有6个运动参量方程,这里仅给出了速度分量及动量空间角3个运动参量方程.

g136-8.gif (1819 bytes) (15)
g136-9.gif (1072 bytes) (16)
g136-10.gif (2285 bytes) (17)

  以上各式中,m0和γ分别为电子的静止质量和相对论因子,φ为动量空间角,u=γv,v为电子的速度,如图1所示.
  从有源麦克斯韦方程出发,经过一系列复杂的推导并对电流进行离散化后得到非线性注波互作用场方程为

g136-11.gif (3546 bytes) (18)

上式中,P为在一个高频场周期内所取的电子注批数,M为考虑电子注厚度因数而将电子注化分的圈

数,N为每圈上所取的宏电子数,S为谐波次数.〈…〉表示对初始速度分布函数为g0(v⊥,vz)的速度空间进行平均.设电子注为单能电子注,速度零散主要来自于横纵向速度比值(V⊥/Vz)的零散,这里按正态分布规律来处理速度零散,即初始速度分布函数为

g136-12.gif (1180 bytes)

式中K为归一化常数,△vz为平均纵向速度零散,δ为狄拉克函数.
边界条件

f(z)|z=0=f(0) (19)
g136-13.gif (676 bytes)(20)

式中f(0)为输入高频场电场幅值.
  方程(15)~(18)为自洽非线性注波互作用方程组.将电子注离散为NT个宏电子,则一共有6NT+2个一阶非线性微分方程,结合边界条件(19)、(20),利用四阶龙格库塔法对注波互作用进行数值计算,计算结果在下部分内容中给出并讨论.

四、结果与讨论
  表1给出了互作用电路参数,各图表曲线相关参数见相应图表标注.图3给出了驱动功率为20W情况下,效率与电子速度比值α的关系.图中B0、Bg分别为直流磁场和共振点磁场,ω为高频场频率,ωc为波导截止频率.由于在回旋行波管中波的能量取自于电子的横向能,又由于当α值增大,电子的横向能量以及回旋半径也随着增大,因此互作用效率也就随着α增大而增大.但当α增大到一定值后,注波互作用达到饱和,同时由于电子注回旋半径过大,电子在波导壁上产生截获,这样互作用效率又随α值增大而减小.

表1 数值模拟参数与结果

内半径1.024mm
外半径1.465mm
电路长度87.9mm
注电压60kV
注电流6A
α1.3
直流磁场11.674kG
高频场模式π
谐波次数3
工作频率95.08GHz
模拟结果 
饱和效率22.8%
饱和输出功率82kW
饱和增益36.15dB

t137-1.gif (1860 bytes)

图3 效率与电子注速度比值α的关系(s=3,πmode,I=6A,V=60kV,ω/ωc=1.032,
   B0/Bg=0.99)

  图4所示为饱和效率、饱和增益与B0/Bg值之间的关系,虚线为饱和增益曲线.图中γz为纵向速度分量的相对论因子.图示表明,一方面,降低B0/Bg值,有助于提高饱和互作用效率,但B0/Bg值不能太低,否则失谐加重,注波互作用难以达到同步,饱和效率便会迅速降低;另一方面,增加B0/Bg的值却有利于提高饱和增益.总的来说,磁场失谐率的选择应在效率和增益之间作优化折衷.

t137-2.gif (2868 bytes)

图4 饱和效率及增益与B0/Bg值的关系(s=3,π mode,I=6A,V=60kV,ω/ωc=γz,
   α=1.3)

图5所示电流分别为3A、6A和9A情况下(a)饱和效率、(b)饱和增益随频率变化的关系.可以看出饱和效率、饱和增益以及饱和

带宽都随电流的增长而有所增加.在6A和图示情况下,饱和带宽为7%,电流为3A增大到9A时,饱和带宽从4.6%增大到8.3%.

t137-3.gif (5432 bytes)

图5 不同电流下,(a)饱和效率(b)饱和增益随频率变化的关系(s=3,π mode,V=60kV,α=1.3,B0/Bg=0.99)

  图6所示为几个不同磁场失谐率下饱和增益以及饱和效率随频率变化的关系.由图可见,磁场失谐率对饱和增益、饱和效率及饱和带宽都有较大影响,B0/Bg值的提高有利于饱和增益及饱和带宽的提高,但饱和效率却有所降低.在图示条件下,当B0/Bg值从0.983增大到0.998时,饱和带宽从4.8%增大到9.3%.

t137-4.gif (5428 bytes)

图6 不同磁场失谐率下,(a)饱和增益及(b)饱和效率随频率变化的关系(s=3,π mode,I=6A,V=60kV,α=1.3)

  图7为在不同磁场失谐率下饱和效率随谐波次数的变化关系.由图表明,饱和效率随谐波次数的增大而降低,B0/Bg值越低,谐波次数对饱和效率的影响越大.

t137-5.gif (2110 bytes)

图7 饱和效率随谐波次数的变化关系(π mode,I=6A,V=60kV,α=1.3,ω/ωc=γz,rL/a=0.7)

图8所示为不同谐波次数下饱和效率随频率的变化关系.图示表明

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top