微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > RFID和wi Fi在矿井机车监控与管理系统中的应用

RFID和wi Fi在矿井机车监控与管理系统中的应用

时间:07-11 来源:《煤矿现代化》 点击:

器设置不同的ID编号,在系统数据库中建立一个ID编号与阅读器匹配的数据库。安装完成后,需要根据矿区现场调试各个阅读器的读取距离。阅读器的读取范同以10m为准。距离过长不仅需要增加阅读器的功率,也可能造成多个阅读器同时读取一个电子芯片的情况,使定位失准。

  (3)通信模块。每台阅读器配有一个WIFI无线数据传输终端。将每一个阅读器获取的工作人员信息和机车信息通过无线传输至井下以太环网。

  无线传输网络为IEEE 802.1l g标准,在物理层采用2.4GHz的无线频率。在数据链路层的MAC子层,使用"载波侦听多点接人/冲突避免(CSMA/CA)"媒体访问控制(MAC)协议。

  与有线连接部分采用了IEEE 802.3标准,因为节点是尤线和有线兼顾,所以需要支持802.3。802.3描述r物理层和数据链路层的MAC子层的实现方法,在多种物理媒体卜以多种速率采用CSMA/CD访问方式,对于高速以太网该标准说明的实现方法有所扩展。

  2.2.2 软件设计

  从矿井采集的机车信息,通过计算机软件计算,实现了对机车的定位功能、机车作业管理功能和工作人员管理功能。

  (1)机车定位。阅读器采集某一时刻通过该处机车电子标签的信息并一起返回ID编号,服务器查找出与ID编号相匹配的数据库,确定阅读器所属区段,判断出机车所在具体位置。同时在数据库中,建市定位读头表,记录读头的ID号;建立巷道节点表;记录节点的坐标值;建市路由表。记录一个读头到与其相邻的读头所经过的节点ID和节点的坐标值,系统根据这些数据描绘井下工作车辆的行动轨迹。

  (2)机车作业管理。服务器通过分析机车进出采区煤仓的时间,统计每一台机车某一班次运载次数,也可以按不同时段进行次数统计,并够根据统计情况生成班报表、月报表和季报表。根据机车的维修记录和检修年限,判断机车是否需要检修。

  (3)工作人员作业管理。该部分工作由数据库管理系统自动完成对工作人员的作业管理,主要包括:登记各工作人员出入工作面、工作时间信息,各丁作人员所属班组,工作时使用的机车,并自动生成考勤作业统计与报表。

   3 数据库管理系统

  矿井机车监控与管理数据库,以Micmmft Visual studio2005为开发平台,采用Microsoft SQL Server2000作为数据库管理系统,采用基于Net Framework的组件技术,提高开发效率,使得系统易于维护和扩充。在系统功能分析的基础上,设定系统的功能模块。矿井机车监控与管理系统数据库设计为3层分布式结构。根据矿区机车管理的需要,数据管理系统设计了7个方面的功能,使管理人员能监控对井下机车运行,作出决策,同时生成相关作业统计表。

  

  数据库的功能如下:

  (1)显示机车上下井、出入采区煤仓时间。

  (2)查询一台或多台机车实时的井下实际位置。

  (3)记录机车在任一地点的到/离时间和总滞留时间等一系列信息,并对超时滞留机车进行报警。

  (4)查询井下轨道占用情况,警示可能发生冲突的轨道区域。

  (5)生成机车运载次数的统计表。

  (6)建屯机车使用、维修数据库。

  (7)生成工作人员出勤和作业量统计表。

  4 结语

  通过该系统能够清楚了解全矿每台机车运动轨迹,同时能对机车运载次数和工作人员作业进行统计。利用WIN无线局域网进行数据传输,节省电缆,减少了线路维护工作量。从经济效益来看,基于RFID/Wi—Fi技术的矿井机车监控与管理系统降低了建设、维护和管理成本,提高了井下运输管理效率。从社会效益看,该系统能实时反映机车的井下位置,便于调度人员的监督和控制,提高r井下运输的安全性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top