微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 详细分析单片机数字滤波的算法

详细分析单片机数字滤波的算法

时间:03-27 来源:网络整理 点击:

为采样次数;Ci为加权系数。加权系数Ci体现了各种采样值在平均值中所占的比例。一般来说采样次数越靠后,取的比例越大,这样可增加新采样在平均值中所占的比重。加权平均值滤波法可突出一部分信号抵制另一部分信号,以提高采样值变化的灵敏度。

  样例程序代码如下:

  char code jq[N]={1,2,3,4,5,6,7,8,9,10,11,12}; //code数组为加权系数表,存在程序存储区

  char code sum_jq=1+2+3+4+5+6+7+8+9+10+11+12;

  char filter()

  {

  char count;

  char value_buff[N];

  int sum=0;

  for(count=0;count《N;count++)

  {

  value_buff[count]=get_data();

  delay();

  }

  for(count=0;count《N;count++)

  sum+=value_buff[count]*jq[count];

  return (char)(sum/sum_jq);

  }

  (5)滑动平均滤波算法

  以上介绍和各种平均滤波算法有一个共同点,即每获取一个有效采样值必须连续进行若干次采样,当采速度慢时,系统的实时得不到保证。这里介绍的滑动平均滤波算法只采样一次,将一次采样值和过去的若干次采样值一起求平均,得到的有效采样值即可投入使用。如果取N个采样值求平均,存储区中必须开辟N个数据的暂存区。每新采集一个数据便存入暂存区中,同时去掉一个最老数据,保存这N个数据始终是最新更新的数据。采用环型队列结构可以方便地实现这种数据存放方式。

  程序代码如下:

  char value_buff[N];

  char i=0;

  char filter()

  {

  char count;

  int sum=0;

  value_buff[i++]=get_data();

  if(i==N)

  i=0;

  for(count=0;count《N;count++)

  sum=value_buff[count];

  return (char)(sum/N);

  }

  今天就写到这,因为数字滤波的算法还有很多种方法,比如一阶滞后低通滤波器(惯性滤波法),限时滤波,容错冗余三中取二滤波法等等。不过由于个人能力和时间的原因,还没能把它们一一地列出。以后我会不断地找资料把它们完善。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top