微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 排查EMI问题的必备实用性技巧

排查EMI问题的必备实用性技巧

时间:11-29 来源:文库 点击:

积,因此在使用这类探针隔离能量源时必须十分小心。近场探针套件通常包含许多不同的环路大小,以便你使用逐渐减小的环路尺寸来缩小测量面积。

H场探针在识别具有相对大电流的源时非常有用,比如:

●低阻抗节点和电路

●传输线

●电源

●端接导线和电缆

E场(电场)探针用作小型单极天线,并响应电场或电压的变化。在使用这类探针时,重要的是你要保持探针垂直于测量平面,如图9所示。

图9:将E场探针垂直于导体放置以便观察电场。

在实际应用中,E场探针最适合查找非常小的区域,并识别具有相对高电压的源以及没有端接的源,比如:

●高阻抗节点和电路

●未端接的PCB走线

●电缆

在低频段,系统中的电路节点阻抗可能变化很大;此时要求一定的电路或实验知识,以确定H场或E场能否提供最高的灵敏度。在较高频段,这些区别可能非常显著。在所有情况下,开展重复性的相对测量很重要,这样你就能肯定因为实现的任何变化引起的近场辐射结果能被精确再现。最重要的是,每次试验改变时近场探针的布局和方面要保持一致。

跟踪EMI辐射源

在这个例子中,小型微控制器的EMI扫描指示有一个超限故障似乎来自于中心频率约为144MHz的宽带信号。借助MDO的频谱分析仪功能,第一步是将H场探针连接到射频输入端,用相对的近场测量定位能量源。

如上所述,重要的一点是H场探针的方向要让环路平面与待测导体保持一致。在PCB周围移动H场探针,你就可以定位能量源。通过选择逐渐缩小孔径的探针,你可以将搜索定位在一个较小的区域内。

一旦定位到明显的能量源,如图10所示的射频幅度与时间轨迹就能显示这个范围内所有信号的完整的功率与时间关系。利用这个轨迹线可以清楚地看到显示屏中有一个大的脉冲。移动频谱时间使其通过记录长度,很明显可以看到EMI事件(中心位于140MHz左右的宽带信号)直接对应于这个大脉冲。为了使测量稳定下来,打开射频功率触发器,然后增加记录长度以判断这个射频脉冲发生的频度。为了测量脉冲重复周期,打开测量标记并直接判断周期。

图10:MDO的射频幅度与时间轨迹(上图)显示在140MHz处有一个显著的脉冲。频谱图形(下图)显示了这个脉冲的频率内容。

明确断定EMI源的下一步是利用MDO的示波器功能。保持相同的设置,打开示波器的模拟通道1,浏览PCB以寻找与EMI事件同时发生的信号源。

在利用示波器探针浏览信号一段时间后,就可以发现图11所示的信号:在这个案例中是一个电源滤波器。从显示屏上可以清晰地看到,连接示波器通道1的信号与EMI事件直接相关。现在就可以制订EMI修复计划了,以便在开展认证测试之前解决这个问题。

图11:使用示波器模拟通道上的无源探针找出与射频关联的信号。

本文小结

不能通过EMI一致性测试可能将产品开发计划置于风险之中。然而,预先一致性测试可以帮助你在到达这个阶段之前排除EMI问题。与高度受控的EMI测试线中的绝对测量不同,你可以使用EMI测试报告中的信息开展相对测量,并用它来隔离问题源,并估计修复效果。

高效的EMI排查一般是利用近场探测方法寻找相对高的电磁场,判断它们的特征,然后使用混合域示波器将场活动与电路活动关联在一起来判断EMI源。本文概述的排查技术可以有效地帮助你隔离有害的能量源,以便于你在将设计提交给EMI认证之前修复这个问题。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top