典型的传感器融合软件架构
传感器融合是一个高度专业化的设计领域,需要熟练掌握建模和仿真技术。它要求尽最大可能地理解传感器的工作细节以及它们的缺点和交互情况。多年来,人们的关注点已经被带进导航、智能手机应用和游戏等领域。但直到现在,借助大量知识的储备和累积,才使得人们可以获得真实和精确的结果。
在基于传感器融合的系统中,操作需要进行精细调整。现实世界中没有什么事像"即插即用"这么简单。一个系统的试运行要求必须调整参数,而且每个传感器的操作之间存在交互,因此很容易变成高度复杂的反复过程。如今的软件具有以很高层次执行这种"精细调整"的能力,并且可以向OEM厂商提供简单直观的滤波器调整程序(图2)。
预定义滤波器使得精细调整速度更快
既然传感器融合操作的精细调整已发展并简化成了滤波器调整任务,它就给开发人员提供了一个有价值的机会。通过适当调整滤波器,开发人员或OEM厂商可以让最终产品以市场差异化的方式运行。由于所有权衡管理都是自动完成的,开发人员可以做出有效的决策,例如在最高稳定性和最高性能之间做出权衡,以便适应最终目标市场。
关键性能指标测量设置
所有传感器融合技术并不等同。在现有的实现技术和测试方面,不同供应商之间有很大差异。为了得到正确结果,必须采用含有经过验证的精确库的正确软件方法。
所有硬件在接口和时序参数方面必须兼容和匹配。合理的方法是确保摄像头系统的性能,这些系统将通过跟踪物体上的标记根据物体(本例中是智能手机)移动产生方位矢量。方位矢量再与传感器创建的、用数据记录应用同时记录的矢量进行比较。使用这种基于摄像机的系统允许对最终商用设备进行直接比较。
静态精度
静态精度被定义为设备置于稳定位置时,测量到的设备方位与实际设备方位之间的偏差。为了计算静态精度,需要手机在多个位置静止放置时收集航向、俯仰和滚转方面的成套数据。一个设备的静态精度主要受磁力计和陀螺仪的硬件参数以及软件中给它们分别分配的权重影响。在具有低静态精度值的设备中,最终用户可以在罗盘或地图应用的绝对航向中看到很大偏差,当设备处于静态状态,他们还能在交互式应用中见到抖动(很小的旋转移动)。这是由于软件校正陀螺仪漂移引起的。
由于在运动期间涉及到旋转加速度,测量起来更加困难。动态精度是在手机以不同运动模式(8字舞、慢速线性、快速和慢速旋转以及游戏动作)运动时,通过采集航向、俯仰和滚转等成套数据进行计算的。所有数据都以最快可能的数据速率进行采集。
在具有低动态精度的设备中,最终用户可以看到屏幕上的移动与设备实际运动之间有很大偏差。这在增强现实应用中特别引人注意,因为增强单元的移动与现实世界不是同步的。这也是用户在使用虚拟现实几分钟后就感到不满意的原因之一。
虽然直接关系不是很明显,但大误差的动态精度也是室内导航应用性能差的主要原因。由于用户在已知固定点之间导航(比如从Wi-Fi或蓝牙信标开始),传感器数据可用于计算轨迹。然而,航向误差将随着时间的推移而累积,因此具有15°较差动态精度的设备很容易在20s~30s时间内产生超过100°的累积误差。诸如地图匹配等更高层处理也许可以做些修正,但代价是更大的功耗(图3)。
校准时间
校准时间被定义为在纯净的磁场环境中校准设备中的磁力传感器,使之从未校准状态到完全校准状态所需的时间。所有磁性传感器都需要进行校准,但用于校准的方法定义了最终用户是否需要校准以及如何去校准。
一些设备采用8字舞校准方法,即提示最终用户将设备在空气中做8字运动完成设备的校准。即使是由有经验的测试人员来做,这种方法也要花5s~6s的时间才能完成设备校准。
具有较短校准时间的设备使用陀螺仪校准磁力传感器,这意味着校准可以在背景中运行,所要求的设备移动幅度要小得多。这些移动通常在正常操作中进行,最终用户永远不必主动去校准传感器。博世传感器技术公司的快速磁力校准(FMC)算法就是使用后一种方法来确保较短的校准时间。
方位稳定时间
方位稳定时间被定义为"运动之后"到达精确、稳定方位状态所需的时间。方位稳定时间应尽可能短,以便用户看不到他们停止移动设备与设备停止移动并稳定到正确位置之间的延迟。当设备的静态和动态精度都很差时,设备上的这种延迟就很明显,因为需要更多时间校正移动中累积的误差。这种效应在需要实时响应的游戏和虚拟/增强现实应用中尤其令人讨厌。
从详细的评估和分析来看, 显然本文所述的传感器
- 双轴微机械陀螺仪的移动机器人运动检测系统(11-14)
- 铁路检测仪中陀螺仪的信号采集电路设计(05-16)
- 三轴陀螺仪工作原理介绍(04-12)
- 苹果背后的传感器巨头(07-12)
- 手机中各类传感器解析(09-24)
- [传感器知识]电子罗盘和陀螺仪究竟有何区别?(07-30)