零漂移放大器:现可轻松用于高精度电路中
顾名思义,零漂移放大器是指失调电压漂移非常接近于0的放大器。它使用自稳零或斩波技术(或兼而有之),并随时间和温度连续自校正直流误差。这使得放大器能够实现μV级失调和极低的失调漂移。因此,它尤为适用于高增益和高精密性能的信号调理电路中。例如,传感器(比如温度、压力或称重传感器)一般产生低电平输出电压,因此需要一个放大器来放大信号,同时不应引入更多误差。零漂移放大器针对超低失调电压和漂移、高共模抑制、高电源抑制以及更低的1/f噪声而设计,是在高要求系统应用中(比如检测应用)实现高分辨率的理想选择,具有较长的产品生命周期。
零漂移放大器的基本架构
图1显示了基本斩波放大器(单位增益配置)的电路图。直流增益路径包括输入斩波开关网络(CHOPIN)、第一跨导放大器(Gm1)、输出斩波开关网络(CHOPOUT)、第二跨导放大器(Gm2)和频率补偿电容(C1和C2)。CHOP和CHOP‘通过时钟发生器和函数控制,可校正不希望出现的放大器直流失调电压(VOS)。
图2显示了相关时序图以及预期输出电压(VOUT)。当CHOP时钟信号为高电平(A阶段),放大器Gm1的差分输入和输出连接至信号路径,并且无反转。由于存在VOS,因此产生正输出电压VOUT。当CHOP’时钟信号为高电平(B阶段),Gm1的输入和输出连接信号路径且反转,并由于VOS而产生负输出电压。来自Gm1的正负输出电压使输出电压等于±VOS。时域中的这种斩波概念类似于频域中的调制。换言之,Gm1失调电压由CHOPOUT向上调制到斩波频率。另一方面,输入信号经由CHOPIN和CHOPOUT斩波两次。这与向上调制然后向下调制到原始频率的输入信号相等。因此,进入输出端的输入信号不发生反转。
正负输出电压(来自Gm1的±VOS)以电压纹波的形式出现在VOUT(图2)。此外,CHOP和CHOP‘时钟通过开关相关的寄生电容耦合至差分输入引脚。时钟改变状态后,电荷注入差分输入引脚。这些注入的电荷经由有限输入源阻抗转换为输出电压毛刺。毛刺的幅度和形状取决于输入源阻抗以及差分输入引脚上注入电荷的数量和匹配程度。这些输出纹波和毛刺会产生开关伪像,并在噪声频谱中的斩波频率和其整数倍数频率处出现增长。此外,每个零漂移放大器的开关伪像幅度和频率各有不同,并且各元件之间也有所不同。本文中,术语"斩波"和"开关频率"可以互换使用。
图1. 斩波架构
图2. 斩波时序图
数据手册中的开关伪像
一般而言,零漂移放大器具有较大的宽带噪声和较低的开关频率,范围从几千赫兹到几十k赫兹。这限制了它们只能用于直流和低于100 Hz的应用,以使开关频率保持在目标信号带宽外。对于要求在更高带宽下具有高精度和低漂移的应用,使用开关频率较高的零漂移放大器很重要。事实上,开关频率有时候可以看成零漂移放大器的品质因数。较新的零漂移放大器采用高级设计架构,针对在高很多的频率下具有较小开关伪像而设计。例如,除了在4.8 MHz处对失调电压进行斩波,高电压、双通道、零漂移放大器ADA4522-2还采用专利的失调和纹波校正环路,最大程度减少开关伪像。校正环路工作频率为800 kHz,用于消除失调电压±VOS(如图2所示)。将±VOS下降至其初始值的1%能改善40 dB开关伪像。这样可以减少系统设计人员实现系统级精度目标的工作量。
检测开关伪像最简单的方法是观察放大器的电压噪声密度频谱。图3显示了ADA4522-2折合到输入的电压噪声密度图。注意,通道B在其800 kHz开关频率处表现出了噪声频谱的增加。正如前文所述,这种噪声频谱的增加是电荷注入失配产生的副作用。由于失配取决于器件对器件以及通道对通道,因此噪声尖峰的幅度也有所不同,且并非所有器件都会表现出噪声尖峰。例如,同一个器件的通道A在800 kHz开关频率处并未表现出任何噪声尖峰。各器件之间的开关频率还可有10%到20%的差异,具体取决于片上时钟振荡器频率的变化。
图3. ADA4522-2电压噪声密度
不同零漂移放大器之间的噪声对比
图4显示了三个不同高电压、零漂移放大器折合到输入的电压噪声密度。注意,测试的全部三个零漂移放大器都表现出了一定程度的开关伪像。某些开关伪像还在其整数倍频率处重复。这些开关伪像可能非常大,并有可能在电路设计中引入误差。因此,了解它们对电路的影响,然后找到减轻影响的方法很重要。如果放大器具有高于开关频率的闭环频率,那么这种噪声频谱的增加将会积分至整个带宽中,并反映在输出端。不仅如此,折合到输入的电压噪声还会被放大
- 精密运放的零漂移和宽电源及输入电压范围技术解析(01-21)
- 基于零漂移仪表放大器的传感器电路优化方案(09-15)
- 利用24位Σ-Δ型ADC AD7791和外部零漂移放大器ADA4528-1实现精密电子秤设计(11-17)
- 零漂移放大器设计方案(12-23)
- 精密放大器:零漂移特性和更宽电源电压及输入电压范围(02-28)
- 利用零漂移仪表放大器(IA)应对传感器测量的设计(12-22)