微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 宽频带低噪声放大器的设计方案

宽频带低噪声放大器的设计方案

时间:05-12 来源:互联网 点击:

在窄频带低噪声放大器中,直流偏压供电引入线的常用结构是λg/4高阻抗微带线,其终端采用扇形线或电容对高频短路,这种结构可用的工作频带最高不过 40%~50%带宽。因此在宽频带低噪声放大器电路中,不可能再用这种形式的偏压引入线,可采用微带线中心跳线型式的偏压引入线,即把跳线焊接在微带中心轴线上,在理想状态下微带线中心正上方空间处没有电场分布。跳线外端焊点对微带边沿的距离至少要大于基片厚度,以保证焊接点在电场之外。由于跳线直径对电感量影响较弱,长度对电感量影响较大,需准确控制。跳线可适当离开基片表面,以减小地板对电感量的影响。另外还需考虑电源的低频滤波和级间低频去耦电容,去耦和旁路电路要足够大,以免出现低频振荡。微带电路中的隔直电容尽量采用高Q值、高稳定温度系数、无谐振及低损耗的宽频带表贴电容,如美国DLI公司 C06系列产品。屏蔽盒体横向宽度应小于最高工作频率的半波长,以避免盒体内部空间产生波导传输效应。微带基片应保持良好接地,固定螺钉的数量要相对多一点,最好螺钉孔的孔壁金属化接地。调试时在盒体的上盖板内表面贴敷相应频段吸波材料,以减小空间耦合所引起的带内增益起伏。

  宽频带低噪声放大器还需要进行电磁兼容设计,首先对进入屏蔽盒的电源线使用带馈通滤波器的穿芯电容进行滤波,减小通过电源线所带来的串扰问题;其次需要解决好放大器的端口匹配,确保集成到接收系统时能兼容工作;最后还需对盒体采取电磁屏蔽措施,减小因电磁辐射所带来的干扰问题。在研发阶段加强电磁兼容工作,有利于产品通过相应标准电磁兼容测试。

  4 设计实例仿真

  根据某任务研制要求,需要设计一个工作于L/S频段的低噪声放大器,主要技术指标包括:工作频率为1.2~2.5 GHz;P-1dB≥10 dBmW;增益G≥32 dB;噪声系数Nf≤1.1 dB;输入、输出驻波比不大于1.5.依据以往工程经验,选用两只NEC公司生产的NE42484A低噪声器件进行平衡式电路设计,此电路增益明显满足不了指标要求,需要增加一级高增益且噪声较低的带内匹配电路的放大器,如Stanford公司生产的SAN-386内匹配晶体管。根据多级放大器噪声计算公式:

  

  式中:F为两级放大器总的噪声系数,F1,F2分别为第一、二级的噪声系数,G1,G2分别为第一、二级的增益。通过该公式可以明显看出,级联后的噪声系数主要取决于第一级放大器的噪声系数,且第一级增益越大,后级对总噪声系数的贡献就越小。

  两只NE42484A场效应管的S参数尽量选择一致,微带基片选用介电常数为9.2、厚度为1 mm的复合介质基板,利用ADS软件建立仿真电路拓扑结构,匹配电路的形式选择微带阻抗变换型匹配法,该匹配法在形式上相当于若干条微带线相互串联而成。根据NE42484A场效应管和SAN-386晶体管的S参数进行仿真优化设计,常用的优化方式分为随机优化和梯度优化,随机法通常用于大范围搜索,梯度法则用于局域收敛。优化时可设定少量的可变参数,对放大器的各个指标分步骤进行优化,先用100~200步的随机法进行优化,后用20~30步的梯度法进行优化,一般可达最优结果。

  仿真结果见图3.在1.2~2.5 GHz的工作频带内,输出功率1 dB压缩点在器件的选择时已经保证;带内增益在35~37 dB之间;噪声系数不大于0.8 dB;输入、输出驻波比均小于1.5.仿真分析结果表明,采取这种设计方案可以满足研制要求。通过仿真优化后的电路拓扑结构绘制微带电路板,注意要在匹配微带线加入隔离小岛,以方便调试时更改微带线的尺寸,获得更好的性能;在电路的四周大面积附铜,并留下较密集的金属化接地过孔,增强电路的接地性能,如图 4所示。图中标有V1,V2处是待焊接的两只NE42484A场效应管,V3处是待焊接的SAN-386晶体管。

  

  在放大器的生产调试过程中发现有两个重要环节需要注意,一个是的加工工艺保证;另一个是供电偏置电感的调试。Lange耦合器的耦合线间需要粘结跳线,如图1所示,试验证明微带电路板镀金后采用金丝压焊工艺可以保证可靠性和精度,且耦合线问采用单根跳线或多根跳线性能指标基本不变,因此建议在实际使用时采用两根以上并行跳线以提高可靠性。如果工艺条件上无金丝焊接技术,还可以采用同样拓扑结构,选择专业厂家生产的Lange耦合器,例如Anaren公司的小型化表贴器件。供电偏置电感需要手工成形,调试时通过微调线圈间距来改变电感大小,实现电路的最佳匹配,调试完成后采取硅橡胶加固,从而提高可靠性。

  

在完成放大器的调试后对所要求的各项指标进行了实际测试,在1.2~2.5 GHz的工作频

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top