ADC不可忽略的交调失真因素
时间:09-21
来源:互联网
点击:
谱。图4所示为AD944414位80-MSPSADC的双音交调性能。两个输入音的频率分别为69.3MHz和70.3MHz,位于第二奈奎斯特区。
因此,混叠音出现在9.7MHz和10.7MHz,位于第一奈奎斯特区。图4同时显示了所有混叠IMD积的位置。高SFDR会增强接收器在有大信号时捕获小信号的能力,并防止小信号被大信号的交调积掩盖。图5所示为AD9444双音SFDR(为输入信号幅度的函数),其中,两个音的输入频率相同。
总结
交调失真(IMD2、IMD3)和交调截点(IP2、IP3)是混频器、LNA、增益模块、放大器等射频元件的常用规格参数。通过幂级数展开来模拟这些器件的非线性度,可以基于交调截点IP2和IP3来预测各种信号幅度的失真电平。与放大器和混频器不同,ADC失真(尤其是低电平信号)并不适用简单的幂级数展开模型,因此,交调截点IP2和IP3无法用于预测失真性能。另外,当输入信号超过满量程范围时,ADC将充当理想的限幅器,而放大器和混频器一般充当软限幅器。
尽管存在这些差异,但在通信应用中,了解ADC的双音IMD性能至关重要。较好的数据手册会针对多种输入信号频率和幅度提供这种数据。除此以外,ADIsimADCTM程序可用于评估各种ADC在系统应用要求的具体频率和幅度下的性能。ADIsimADC程序充当虚拟评估板的作用,可以从 ADI网站下载,同时还可下载针对IF采样ADC的最新模型。该程序基于FFT引擎,可以精确地计算出单音和双音输入信号的SNR、SFDR和IMD值。
- ADC需要考虑的交调失真因素(09-21)
- 12位串行A/D转换器MAX187的应用(10-06)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- 12位串行A/D转换器的原理及应用开发(10-09)
- 在射击探测器中增加口径确定功能的简单电路(11-13)
- 一种折叠共源共栅运算放大器的设计(11-20)